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NOTATION

body cross-sectiona: area
body base area (at x = ®)
planform area

reference area (taken as Ay for the compariscns of computed with experimental

results)
surface wetted area
exposed wing planform area (2 panels)
speed of sound

semimajor and semiminor axes of elliptic cross section

Fa
Qoo

crossflow drag coefficient of circular cylinder section,

axial-force coefficient,

Fp

9y (A% ),y
drag

Gocfy
lift
GocA,

pitching-moment coefficient about station at Xm from nose,

drag coefficient,

lift coefficient,

pitching moment

QooArX

Fn
Qe0A,

iocal normal-force coefficient per unit length

normal-force coefficient,

Poo

pressure coefficient,
o0

side-force coefficient, Fy
roAr
body cross-section diameter
cross force per unit length along body length

potential cross force per unit length along body length

viscous cross force per unit length along body length
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F,Fy.F,

Kl 9K2

Poo
an

Qeo

g

z

axial, normal, and side force

corner rounding for body cross section, :—v

longitudinal and transverse apparent mass coefficients
body length

body aftersection length

body nose length

Mach number component normal to body axis, M, sin a
free-stream Mach number

pressure

free-stream static pressure

dynamic pressure component normal to body axis, g, sin® a
free-stream dynamic pressure, %pV},

body cross-section radius or corner radius

arc radius of ogive

displacement of crossflow

semispan

time

PV X

free-stream Reynolds number,
Reynolds number component normal to body axis, Re f,sin o
body volume

velocity component normal to body axis, Vo sin o

free-stream velocity

body width
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Subscripts

b

cy
Newt

nose

SB

stag

reference length (generally taken as d for the comparisons of computed with

experimental resuits)
axial distance from body nose

axial distance from body nose to aerodynamic normal-force center (center of

pressure)
axial distance from body nose to centroid of body planform area
axial distance from body nose to pitching-moment reference center
axial distance from body nose to aerodynamic side-force center
angle of attack
angle of sideslip
wing planform semiapex angle

crossflow drag proportionality factor (ratio of crossflow drag for a finite-length

cylinder to that for an infinite-length cylinder)
viscosity coefficient of air
density of air

angle of roll about body longitudinal axis

body base

cylinder

Newtonian theory

body nose

equivalent circular body or cross section
slender-body theory

stagnation
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SUMMARY

An engineering-type method is presented for computing normal-force and pitching-
moment coefficients for slender bodies of circular and noncircular cross seciion alone and
with lifting surfaces. In this method, a semiempirical term representing viscous-separation
crossflow is added to a term representing potential-theory crossflow. In computing Cp; and
C,y, for bodies alone, slender-body theory is used for the term representing the potential
crossflow. For bodies with thin wings and tails, the linearized potential method of Nielsen,
Kaattari, and Pitts, modified for high angles of attack, is used.

For many bodies of revolution, computed aerodynamic characteristics are shown to
agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The
angles of attack extend from 0° to 180° for M_, = 2.9 and from 0° to 60° for M., = 0.6
to 2.0.

For several bodies of elliptic cross section, measured results are also predicted reason-
ably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack
from 0° to 60°. As for the bodies of revolution, the predictions are best for supersonic Mach
numbers.

For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4,
measured normal-force coefficients and centers are predicted reasonably well at the upper
test Mach number of 2.0. However, with a decrease in Mach number to M, = 0.6, the
agreement for Cy; rapidly deteriorates, although the normal-force centers remain in close
agreement.

For M, = 0.6, 0.9, and 2.0 and angles of attack of 10°, 20°, 30°, 40°, and S0°,
vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail
configurations. When separation and vortex patterns are asymmetric, undesirable side forces
are measured for the models even at zero sideslip angle.

These side forces can be significantly affegted by changes in Mach number, nose
fineness ratio, nose bluntness, and body cross section. Generally, thc side-force coefficients
decrease or vanish with the following: increase in Mach number, decrease in nose fineness
ratio, change from sharp to blunt nose, and flattening ot body crcss section (particularly the
body nose). Additions of afterbody strakes, wings, or wings plus tail produce much smaller

or no appreciable effects.
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CHAPTER 1
INTRODUCTION

Over the last several years, high angle-of-attack aerodynamics has increased in ‘mpor-
tance because of the demand for gicater maneuverability of space shuttle vehicles, missiles,
and military aircraft (both manned and remotely piloted). Until recently there has bzen a
general lack of analytical methods and aerodynamic data suitable for use in the preliminary
design of most advanced configurations for flight to high angles of attack over a wide range
of Mach and Reynolds numbers. There has been, however, considerable research leading to
the development of methods for predicting the static aerodynamic characteristics of simple
shapes, primarily slender bodies of revolution.

Prior to the work of Allen in 1949 (ref. 1), most analytical procedures for computing
the aerodynamic characteristics of bodies were based on potential theory, and their useful-
ness was limited to very low angles of attack. Allen proposed a method for predicting the
static longitudinal forces and moments for bodies of revolution inclined to angles of attack
considerably higher than those for which theories based only on potential-flow concepts are
known to apply. In this method, a crossflow lift attributed to viscous-flow separation is
added to the lift predicted by potential theory. This method has been used quite success-
fully to compute the aerodynamic coefficients of inclined bodies (e.g., refs. 1 -6), although
most data available for study until 1961 were for bodies at angles of attack below about
20°, and the formulas were initially written to apply only over about this angle-of-attack
range.

In 196!, Allen’s concept was adapted by Jorgensen and Treon (ref. 7) for cumputing
the normal-force, axial-force, and pitching-moment coefficients for a rocket booster
throughout the angle-of-attack range from 0° to 180°. Reasonable agreement of theory with
experiment was obtained for a test model of the rocket booster over the Mach number range
from 0.6 to4. The Allen concept was further applied by Saffell, Howard, and Brooks
(ref. 8) in 1971 in a programmed method for predicting the static longitudinal aerodynamic
characicristics of low aspect-ratio missiles operating at angles up to 180°.

In 1958, a method for computing the aerodynamic characteristics for bodies of non-
circular cross section was proposed by Jor:ensen (ref. 6). In this method, normal-force and

pitching-moment coefficients (CNo and Cmo) are computed by Allen’s formula¢ for the

i
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equivalent body of revolution which has the same axial distribution of cross-sectional arc. as
the noncircular body. Then the values of Cpr and C), for the noncircular body are computed
from CN/CNO and Cm/Cmo ratios determined from apparent mass coefficients (i.e., from
slender-body theory). Good agreement of theory with experiment (ref. 6) was obtained by
this procedure for bodies of elliptic cross section at the conditions investigated (a/b = 1
to 2,4 =0° and 90°, M, = 2 to 4, and a = 0° to 20°).

Early in 1973, the Allen concept was again applied by Jorgensen (ref. 9) to further
develop an engineering-type procedure for computing normal-< rce, axial-forc:, and
pitching-moment coefficients for slender bodies of circular and noncircular cross sections at
a=0° to 180°. The Cy, and C,,, formulas were written, however, for a body whose cross-
sectional shape remains constart over the body lcngth, but the crosssectional area, of
course, is allowed to vary.

In 1973, Jorgensen (refs. 10 and 11) rewrote the Cyy and C,, expressions to apply for
the general case of a slender body alone or with lifting surfaces where the cross-sectional
shape, as well as the cross-sectional area, is allowed to vary along the body length. For the
special case of winged-elliptic cones, simplified expressions for Cy; and C,,, were also pie-
sented. Good agreement between predicted and experimental results was shown. However,
experimental results available for comparison with the method were limited to simple ellip-
tic bodies and winged-elliptic cones at angies of attack less than about 20° and Mach
numbers only from 2 to 4. Thus, it was concluded that additional comparisons {or these and
more diverse configurations were needed at higher angles of attack and lower Mach numbers
to determine validity limits for the method.

In 1972-73 there was a great need to cnlarge the relatively small data base for bodies
alone and in combination with wings and tails at subsonic, transons., and supersonic Mach
numbers. This nced still exists today, but it has been zlleviated significantly by some recent
introductory investigations into this high « field (e.g., refs. 12~21). Most studies have been
initiated primarily for application to missile aerodynamics. Two recent studies, however,
have been more aircraft oriented in that they have been directed toward the determination
of experimental acrodynamic characteristics for slender bodies with thin wings (ref. 20) and
with wings and a tail (ref. 21). There is still need for study and analysis of much of this

recently obtained data both for slender bodies alone and for bodies with wings at very high



angles of attack. As previously mentioned, the Jorgensen mcthod should be further com-
pared with experiment. Also, there is an urgent need for contisziued study of unwanted side
forces and yawing moments which have bezn shown to develop for models at high a values
with f=0°. These unwanted side forces and yawing moments, which probably lead to
undesirable stall/spin characteristics, have been m~.:sured on noses alone, bodies alone,
bodies with wiags, and bodic: with wings and a tail (e.g., refs. 12-21).

In view of the foregoing, the present study was initiated to accomplish the following
objectives:

. Review and extend the derivation of Jorgensen’s engin.ering-type method
(refs. 9-11) for computing the normal-force and pitching-moment characteristics of slender
circular and noncircular bodies alone and with thin lifting su.faces.

2. Assess the method for predicting the acrodynamic characteristics of missile-like
bodies of revolution.

3. Assess the method for predicting the aerodynamic characteristics of bodies of ellip-
tic cross section.

4. Assess the method for predicting the aerodynamic characteristics of bodies with
thin wings alone and in combination with a tail.

S. Present and discuss visual observations of the vortex flow fields over models of
bodies alone and in combination with wings.

6. Present and discuss data pertaining to the origin and alleviation of undesirable side
forcos and yawing moments associated with high o flight at § = 0°.

In connection with objectives (5) and (6), the present study is limited in scope to an
experimental study of the vortex flow fields and side forces associated with bodies and
body-wing combinations. It is firmly believed that a larger experimental foundation must be
acquired at this time to aid in the further development of flow-field modeling techniques
that can be applied with confidence in preliminary design studies. This is not to say that
important semiempirical modeling techniques hav  not atready ber: <tudied. Most of these
techniques have been based on the impulsive flow analogy and ar»~* . -~ ‘lender bodies of
revolution. In this analogy, it is assuined that the crossflow plane :s swept uniformly down
the length of an inciined body at the r*te ¥, cos a. Then theie is an analogy made between

the leeward flow field and the developing wake behind an impulsively started cylinder in
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crossflow. This analogy was initially suggested by Allen and Perkins (ref. 2) and applied by
Kelly (ref. 22).

The ‘mpulsive flow analogy probably has been used most elegantly in recent studies by
Wardlaw (refs. 23 and 24). In one of his latest studies (ref. 24), he simulated the viscous
crossflow plane by superimposing a large number of point vortices on the potential solution
for flow about a cylinder. For some pointed-nose bodies, he has shown qualitative agree-
ment with experimental observations, but even the latest Wardlaw method still must be
considered to be in an early exploratory phase. Others have used the impulsive-flow analogy
and attempted to model the crossflow field (e.g., refs. 25-32).

Attempts also have been made to solve the crossflow field problem with the Navier-
Stokes equations (refs. 33 and 34), but these studies have been applied only to bodies at
supersonic speeds and moderate to low angles of attack. Computer times appear to become
prohibitive for most practical cases.

Because of many deficiencies in the understanding of the physical flow fields around
bodies and wings at very high angles of attack, further experimental investigation is required

before much reliability can be realized from further analytic modeling.
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CHAPTER 2
DERIVATION OF BASIC METHOD FOR COMPUTING Cp AND C,,
CHARACTERISTICS

Here we first review the derivation of some basic equations for computing the
normal-force and pitching-moment coefficients, Cy and C,,,, for slender bodies of revolu-
tion to very high angles of attack (section 2.1). Then we extend the derivation to obtain
more general Cy; and C,,, equations that can be used for slender bodies of circular and
noncircular cross section alone and with thin lifting surfaces (section 2.2). Necessary empir-
ical input values of crossflow drag coefficient for circular cylinders are presented in sec-
tion 2.3, and theoretical formulas to obtain input local normal-force coefficients for non-
circular configurations are presented in section 2.4. Finally, in section 2.5, we briefly discuss
the relative influence of derived potential and viscous crossflow terms used in the basic

equations to compute both Cp, and ¢, as a function of angle of attack.

2.1 Bodies of Revolution

In 1949, H. J. Allen (ref. 1) proposed a heuristic concept for predicting the static longi-
tudinal forces and moments for bodies of revolution inclined to angles of attack consider-
ably higher than those for which theories based only on potential-flow concepts are known
to apply. In this concept, a crossflow lift attributed to viscous crossflow separation is added
to the crossflow lift predicted by potential theory. For the potential lift, Allen used the
slender-body equation derived in 1923 by Max Munk for airship hulls (ref. 35).

From the momentum consideration, Munk (ref. 35) showed that, for slender (high-
fineness-ratio) bodies, the potential cross force per unit 12ngth fp at any station along the
body is given bv

fp = (Ka = Ko sin 20 % Q@.n

where A is the cross-sectional area of the body at any axial distance x from the nose apex; a
is the angle of attack; and K, and K, are, respectively, the transverse and longitudinal
apparent mass coefficients for the body. From calculations of K, and K; made initially by

H. Lamb (ref. 36) for ellipsoids of various fineness ratios, Munk (ref. 35) has shown that
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K, - K, is approximately unity for high fineness ratios. It has been customary to assume a
value of unity for the factor K, - K, and it is assumed in this formulation.

G. N. Ward (ref. 37) has shown that the section cross force fp at small angles of attack
acts as an angle midway between the normal to the axis of revolution of the body and the
normal to the free-stream velocity (i.e., at an angle «/2). With this consideration, equa-
tion (2.1) is multiplied by cos (a/2) to determine the normal-force distribution. At high «, the
potential lift becomes small in comparison with the viscous crossflow lift, and it is of little
practical consequence whether this low a multiplier [cos («/2)] is retained or replaced with
unity,

Now consider the derivation of the crossflow lift attributed to viscous crossflow separa-
tion. Allen (ref. 1), for a body of revolution of high fineness ratio, first treated each circular
cross sectioil as an element of an infinitely long circular cylinder of the same cross-sectional
area. With this assumption, the local cross force per unit length due to viscosity is given by

p
fy=2Cy —é"— (2.2)

where r is the body radius at any station x from the nose apex; Vn is the velocity normal to
the longitudinal axis; p is the mass density; and Cdn is the steady-state crossflow (or normal)
drag coefficient based on g,,, diameter, and unit length at station x. Cdn isa fi tion of
both the Mach number and Reynolds number components normal to the cylinder longitu-

dinal axis. Hence, for a body at angle of attack, Cdn is a function of

Vn .
M, = == M, sin (2.3)
and
Re, = Re sin a (24)
where
Vyp = Voo sina .5)

Here M, Re, and V,, are free-stream values, respectively, of Mach number, Reynolds

number, and velocity; the speed of sound is denoted by a.
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For this study, Cdn is taken as the steady-state crossflow drag coefficient for a circular
cylinder. Other researchers (e.g., refs. 22—32) have assumed that the developmen of the
crossflow with distance along an inclined body of uniform diameter is analogous to the
development with time of the flow on a cylinder impulsively set in motion from rest. In this
analogy, it is assumed that the crossflow plane is swept uniformly down the length of an
inclined body at the rate V., cos . When this analogy is assumed, the value of Cdn starts
from zero (at zero time), then increases to a maximum value about 25 percent higher than
the steady-state value, then decreases to the steady-state value for laminar flow (see, e.g.,
sketch (a) from ref. 27). For turbulent flow, experiments conducted by Sarpkaya (ref. 27)
indicate that the steady-state condition is reached almost at the start of the motion. Thus,
for turbulent flow both the steady-state assumption and the impulsive-flow assumption give
the same result. However, for laminar flow there is a difference, but this difference is not

studied in this report.

.6

Steady state

Circular cylinder impulsively
started from rest (aminar flow)

I i 1 ) 1 ]
0 4 8 12 16 20 24 28
S/r= Vnt/r = (x/r) tan

Sketch (a)

Because of spillage flow around the ends of a finite length cylinder, the value of Cdn is
less than that for an infinitely long (truly two-dimensional) cylinder in the same free
stream. Equation (2.2) should be multiplied by a proportionality factor n, which is the ratio
of Cdn for a finite length cylinder to that for an infirite length cylinder. This factor 7,
which approaches unity as the cylinder length to diameter approaches infinity, is given from

experimental results (discussed later). In the practical use of #, it is assumed that the £/d of

7
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the cylinder is the same as that for the body of revolution being considered. It is also
assumed that the net-force effect of the front and rear end flows is approximately the same

for both configurations. Thus, equation (2.2) is modified to give
fy= 2andnq°° sin® a 2.6)

where
1 _ 4n

2 _ 1 2
PV = 5 oV, — = —
oo 277 sin? o sin? «

2.7

0

Aoo =

Following Allen (ref. 1), the potential solution of Munk and the viscous solution are
combined to determine the cross-force distribution along the body of revolution. With the
potential cross force per unit length acting at a/2 from the normal to the free-siream
direction and the viscous cross force per unit length acting normal to the longitudinal ax. .

the total cross foice per unit length normal to the longitudinal axis is given by

f=fpcos5+f, 2.8)
or
_f_ = g g M in?
» sin 2a cos > dx + 2nCdn (sin® a)r 2.9)

From equation (2.9), the equations for the normal-force and pitching-moment coeffi-
cients for bodies of revolution can be easily derived. With the normal force given by
Fn = ‘!: 2 f dx and the normal-force coefficient defined by Cy=(F n/q,,A,), we obtain

4, dx A,

2 2C,y sin? a  [8
. d
cp = sin 2a cos (a/2) dd i + ____"_____f r dx (2.10)
0 0

Likewise, with the pitching-moment coefficient defined by

Y
_ pitching moment _ "c: S0y - x)dx

C
m 44, X Goodr X ’
we obtain
4 21C; sin? a
v sin 2« cos (a/2) d4 - dy _
Cm AX f o (6 x)dx + _7;7—— r (X, x)dx
0 2.11)

- - - —.



where A, is the reference area; X is the reference length; £ is the body length; and x,,, is the
axial distance from the nose to the pitching-moment reference center.

General i: ‘egrated expressions for bodies of revolution at a=0° to 180° can be
obtained from equations (2.10) and (2.11). For the sign convention in sketch (b), Jorgensen
(ref. 9) has written the following equations for the normal-force and pitching-moment coef-

ficients:

o

A '
Cy = ZE’. sin 2a cos 3 +nCy zil sin? o’ ;  0° < o < 180° (2.12)

V- A& - x,,) o' A, /X, - X
= O 14 m (4 22,
Cm [ AX ] sin 2’ cos 3 + nCdn A_r (—-———X ) sin? a' ;

0° <a<90° (2.13)

and

V—Abxm o A X, = X
= f{___"om) ' a4 p[Im__"C) Gin? o -
Cm ( A,X )sm 2o’ cos 3 nCdn A, ( Y ) sin® a ;

90° < a < 180° (2.14)

where A, is the body base area; Ap is the planform area; V¥ is the body volume; x_, is the
distance from the nose apex to the centroid of planform area; and &' = « for 0°< a < 90°
and o’ = 180°- a for 90° < a < 180°.

0° €a<90°

Sketch (b)

9

[ ———



/o

The axial distance from the nose apex to the aerodynamic force center is then given by

*m  Cn )
Xm =l - —}X 2.15)
ac (X CN
When lift and drag coefficients are desired, they may be obtained at all a values from

the conversion expressions:

Cp = CN Cos o ~ CA sin a 2.16)

CD=CNsina+CA cos o 2.17)

Generally, it can be shown that for values of a well removed from a = 0° and 180° precise
prediction of C 4 is not necessary to obtain reasonably accurate values of Cy and Cpy.

Jorgensen (ref. 9) has suggested that, for rough engineering estimates, the axial-force
coefficients for slender bodies can be approximated by

Cy= CAa=0° cos? o; 0°<a<90° (2.18)

and

Cyq = CAa=180° cos’ a; 90°<a< 180° 2.19)

Here cos? a is merely the ratio of the dynamic pressure in the axial direction to the dynamic
pressure in the free-stream direction. A more precise method is also outlined in reference 9,
along with procedures for determining C Ag=o® and C Ag = 180° for often used conical and

tangent ogive noses and flat bases.

2.2 Bodies of Circular and Noncircular Cross Section
Alone and With Lifting Surfaces

For the general case of a body alone or with lifting surfaces where the cross-sectional
shape can vary along the body length, procedures similar to those used for a body of
revolution are assumed. Both the potential and viscous separation crossflow terms in equa-
tions (2.10) and (2.11) for Cy and C,, are generalized further.

The potential crossflow term is generalized by multiplying the value inside the integral
by the ratio (C"/C”o)sg — the ratio of the local normal-force coefficient per unit length C,,

for the desired cross-sectional shape to the similar coefficient C"o for the equivalent circular

10
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shape having the same cross-sectional area. The necessary ratios can be determined from
apparent mass coefficients (slender-body theory) for many cross-sectional shapes. In 1958,
this procedure was first shown (ref. 6) to have merit in predicting experimental Cyand C,
results for slender bodies of various cross sections at supersonic specds and angles of attack
up to about 20°. However, because of very limited experimental data, further evaluation
was not possible at that time.

The viscous crossflow terms in equations (2.10) and (2.11) are further generalized by
multiplying the values within the integrals by (Cn/cno) . Here the local ratio of C,, to

C"o

at each x station is assumed to be given by Newtonian impact theory. C4.  remains as
n

the crossflow drag coefficient for the equivalent circular cylinder section.

With equations (2.10) and (2.11) generalized as discussed, and for positive d.1/dx

values,

A

L
_ sin 2a cos (a/2) Cn d4
SB

2nCdn sin? «

Cn
+ r dx (2.20)
A, Cn o
Newt

_ sin 2a cos (/2) Cn d4 -
Cm A,X f (c,, ) ax m O
0 0/sB

2Cy sinfa MR /o

+ n n rx,. - x)dx (2.21)

4.X c, *m '
O/Newt

and

In equations (2.20) and (2.21. the first terms (from slender-body theory) are not applicable
as written for winged-body sections where the dA/dx values are zero or negative, and
procedures similar to those suggested in reference 38 probably should be used. Further
adaptation of this method for use with body-wing and body-wing-tail configurations is
considered in chapter 5.

In the second term of equations (2.20) and (2.21), there is some experimental justifica-
tion for formulating the ratio (Cn/Cno) from Newtonian theory and multiplying it by the
available experimental or theoretical crossflow drag coefficient for the equivalent circular

cross section Cdn' For subcritical crossflow Mach and Reynolds numbers, Jorgensen

11



(ref. 11) has shown that Cn/Cno values from Newtonian theory agree reasonably well with
those from two-dimensional tests (refs. 39-43) of elliptic cross sections and square cross
sections with rounded corners. Jorgensen’s comparisons are shown in table 1. Good agree-
ment also can be expected at high supersonic and hypersonic crossflow Mach numbers
where Newtonian theory by definition should be most applicable. The most doubtful
regimes include the transonic crossflow Mach number regime and the supercritical Reynolds
number regime. (These regimes are discussed further for circular cross sections in the follow-
ing section.)

Where reliable experimental crossflow drag data exist for a desired noncircular cross
section, these data, of course, can be used. Then the values of Cdn for the particular cross
sections can be substituted in equations (2.20) and (2.21) in lieu of the product
Cdn(C”/C"o)Newt’ where Cdn as now written is for a circular cross section only. Of course,
if the shape of the noncircular cross section varies along the body length, values of Cdn must
be substituted within the integral in the second term of equations (2.20) and (2.21),and a

great deal of empirical input data may be necessary for some configurations.

TABLE 1.- Cdn AND Cn/Cno VALUES FOR TWO-DIMENSIONAL CYLINDERS GF
VARIOUS CROSS SECTIONS AT «=90° AS COMPUTED BY NEWTONIAN
THEORIES AND MEASURED AT SUBCRITICAL MACH AND REYNOLDS
NUMBERS

NEWTONAN THEOR O ALwT. THERRY MEASUR
M .
cRoss SEcTIoN | "V T0 T FOR Cpypoq 18 ASURED
Cp [Cn/Cng| Cap [Cn/Cng| Can [Cn/Cng| REE.
1 1 | i
’ O 133 1 100 | 120 1 100 | 120 1 100 | 38
; i ——
o/be2f 0.94 | 050 | 0.85 ' 050 | 0.0 ! o4t ! 404
O D ineef oso | 022 | oy o2 | o3 | oous |
1 | i i
’ a/be2| 1.65 : 105 | 1.49 : 115 | 1.80 : 1.89 :ouz
poke KOO0 200 1 L33 | ong0 o133 [ 205 1 181 | 40
¥ k=002] 1.97 } 3L : 133 | 2.00 1 148 Lo
(Y] ko0 08| 189 | 126 | 170 | 126 | 165 | r22 | 43
keO24| 168 | L4 | 1S L] a2 g 088 | 43
he050] 133 1 100 | 120 1 100 | 120 1 100 1 39

NOTE: ALL Cq.'s IN TABLE ARE BASED ON WIDTH OF
CROSS SECTION, NOT EQUIVALENT 4,

12

B

ingstnimadp Wl



PRDSE———

2.3 Empirical Input Values

2.3.1 Crossflow drag coefficient— To compute Cy; and C,,, for the equations derived in
the previous section, values of crossflow drag coefficient Cdn are needed for an “‘infinite
length” or truly two-dimensional circular cylinder placed normal to an airstream. As pre-
viously mentioned, Cdn is a function of both the Mach number and Reynolds number
components normal to the cylinder longitudinal axis, and hence for a configuration at angle
of attack it is a function of M,, = M, sin « and Re,, = Re sin . In these simple relations,
introduced previously as equations (2.3) and (2.4), M, is commonly called the crossflow
Mach number and Re,,, the crossflow Reynolds number. For circular cylinders, necessary
“state-of-the-knowledge” plots have been prepared for the variation of Cdn with M, and
Re,, (figs. 1-3).

Figure 1 gives the variation of Cdn with M, over the M, range from O to 8. It was
prepared from the data of references 44 through 49 and from data obtained recently by
John M. Macha in the Ames 2- by 2-Foot Transonic Wind Tunnel. Also shown for reference
are the theoretical variations predicted from Newtonian and modified Newtonian theories.
Because of the close agreement of the Newtonian values with experiment at the higher Mach
numbers, it is not surprising that computer programs utilizing Newtonian theories have been
used successfully to predict space-shuttle-booster results in wind tunnels at hypersonic Mach
numbers (see, e.g., ref. 50). Except for the transonic range, where data are very limited, the
variation of Cdn with M, is well documented in figure 1.

In the transonic range, the black symbols in figure 1 represent values of Cdn obtained
recently from pressure-distribution tests of circular cylinders of various diameters (1.9 to
5.1 cm) at crossflow Reynolds numbers from about 1.3X10% to 4.9X10%. Many values of
Cdn were initially computed from the extensive pressure distributions measured by Macha
on the cylinders in the Ames 2- by 2-Foot Transonic Wind Tunnel. Because there was a
general increase in Cd" with decrease in cylinder diameter 4 (but not Re,) for M,, values
from about 0.9 to 1.2, plots of Cd,, vs. d were constructed, and values of Cdn were obtained
by extrapolating the curves to d = 0. The black symbols in figure | represent these extrap-
olated values of Cdn’ values that should come closest to representing data for no interfer-

ence between the models and the wind tunnel. These data agree well with the rocket
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flight-test results obtained in 1953 by Welsh (ref. 49), but these or similar-sized models
should be tested further in a larger transonic wind tunnel.

As shown in figure 1, there is a critical crossflow Reynolds number effect that can
drastically lower the values of Cdn at Mn below about 0.5. For Mn less than about 0.5, if
the crossflow Reynolds number Re,, exceeds the critical value of zbout 2X 103, the value of
Cdn decreases considerably. This variation is shown in greater detail in figures 2 and 3.

Figure 2 gives the variation of Cdn with Re,, for M, less than about 0.4. It has been
well documented over the last 60 years (e.g., refs. 39, 43, 45, 51) that Cdn 2 1.2 for laminar
boundary-layer flow and separation just before the critical Reynolds number of about
Re, = 2X10°. At about Re =S5X10° there is evidence (e.g., refs. 52-54) of laminar
boundary-layer flow around the front of the cylinder to an angular position of about 80° or
90°, where the flow separates, undergoes transition, and reattaches at an angular position of
about 110° to form a laminar separation bubble. Then the turbulent flow separates at some
position downstream (an angular location of about 130°). With a further increase in Rey-
nolds number into the supercritical regime, the bubble decreases in size until the transition
to turbulent flow moves upstream of the location of laminar separation, and the bubble
disappears (ref. 54). From the low Cdn value between about 0.15 and 0.30, Cdn increases
gradually, at least for an increase in Re, up to about 5X10¢. The supercritical Reynolds
number regime has only been investigated recently in any detail (refs. 43 and 52-54), and
there is still considerable uncertainty in the magnitude and trend of Cdn with Re,, and M,,.
The shading in figure 2 indicates the approximate spread or uncertainty in Cdn based on
known data.

Jones, Cincotta, and Walker (ref. 54) probably have made the most detailed study of
circular cylinders in supercritical flow. With the use of freon gas to obtain high Re,,, they
have shown that there is an effect of M,, on the variation of Cdn with Re,,. Figure 3 (taken
from ref. 54) summarizes their Cdn results for M, = 0.25 to 0.50. The reader is referred to
reference 54 for their interpretation of these Cdn results based on pressure-distribution and
visual-flow studies.

For noncircular bodies, as mentioned in section 2.2, experimental values of Cdn for
noncircular instead of circular cross sections can be used with slight modification to equa-

tions (2.20) and (2.21). These data are generally not available for crossflow Mach numbers

14
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above critical. However, some data are available for subcritical crossflow Mach numbers, and
these data should be used if the crossflow Reynolds number Re¢,, exceeds the critical value

(the Re, where C; drops rather drastically with a slight increase in Re,)). In table 2 some
n

TABLE 2.- REFERENCES FROM WHICH EXPERIMENTAL VALUES OF C; VS
n
Re, CAN BE OBTAINED FOR VARIOUS CROSS SECTIONS AND FLOW
DIRECTIONS
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references art l.sted from which experimental values of Cah, v.. .13 Re, can be obtained for
variou- cross seations and flow directions. 1t should be nc.. i .}, :t most experimental values
of Cd” are based on cross-sectional width w and must v.0 -2 .'iplied by w/d, where d is the
equivalent diameter ot the cro:s section.

2.3.2 Crossflow drag proporionclity facte: - " th2 equations to compute Cy and
C,yy» M is the crossflow drag proportionaiity factor, that is, the ratio of the crossflow drag
coefficient for a rinite-length cylinder to that ‘ci un infinite-length cylinder. Cylinder drag
coefficients from which values of n can be determined have been measured (to the author’s
knowledge) only at very low subsonic Mach numbers (refs. 56 and 57).

Values of 7 for circular cylinders at very low crosstlow Mach numbers (from ref. 56) are
plotted as a function of length/diameter ratio in figure 4. Values of n for flat plates are also
plotted, but as a function of plate length/width ratio. The values for the flat plates are only
slightly less than those for the circular cylinders. Thus, it is likely that figure 4 can be used
to estimate values of n for many cross sections varying from circular to flat. However, these
values may be acceptable only for very low crossflow Mach numbers.

An indication of the variation of n with crossflow Mach number M,, can be obtained
by computing values of n from high-a C); data (ref. 16) for slender bodies of revolution.

From equation (2.12),

Cy - sin 2a cos (a/2) (Ab/A,)
nCy = P
n (Ap/4,)sin" &

(2.22)

For two bodies of fineness ratio 10 and 12 (sketched in fig. §), the variation of nCdn
with M, (for Mn = 0.4 to 1.6) has been computed from equation (2.22) with the use of Cn
data for values of a from about 45° to 60°. As shown in figure S, the results for the two
bodies agree closely. Now with the variation of Cd" with M,, in figure 1 and the variation of
"Cd,, with M, in figure 5, the variation of n with M, has been computed and the results
plotted in figure 6. (The circular symbols denote the computed values over the A, range
from 0.4 to 1.6; the square and diamond symbol: represent values of n for very low
cross-flow Mach numbers obtained from fig. 4.)

For most supersonic and hypersonic values of M, , n probably can be assumed to be

unity, an assumption indicated as being essentially correct from past investigations (e.g.,
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refs. 3, 6, 7, and 9). Ti.e greatest uncertainty appears to be within the transonic M,, range,
and here further rescarch is desirable. in this study, however, figures 5 and 6 are used in licu

of better information.

2.4 Formulas and Values of (Cn/CnO) and (Cn/Cn( ) for Various Cross Secti ns
SB ) Newt

To use equations (2.20) and (2.21) for computing Cy; and C,,,, ratios of the cection
normal-force coefficients (C,)) to those for the equivalent circular sections (C,, ) must be
0

determined. The ratios (C,,/C, ) from slender-body theory are used in the first term of
n'tngep

each equation, and the ratios (C"/C"O)N from Newtonian theory are used ir the second
ewt
term.
Formulas of (C,,/C,, ) and (C,/C,, ) are now presented for some of the more
0 O Newt

general cross sections encountered in missile and aircraft acrodynam:.s. Then, for several
sample cross sections, values of (C,,/C,, ) and (C,/C, ) are plotted and compared.
, -0 SB 0 Newt _
24.1 (C,/C, )SB formulas— From slender-body theory (e.g., refs. 58-61, the ratio of
)

C, for a winged-body cross section to that for the equivalent (same area) circular-body

cross section can be determined for many cross-sectional shapes. In ref. 11, (C,/C,, )
0 SB
expressions are determined for .winged-circular and winged-elliptic cross sections (sec

sketches (¢), (d), and (¢)).

s s s
Vn Vnt Vnt
¢)

(©) (d) (
Sketches (c), (d). and (e)

J

For a winged-circular cross section with the wing planform perpendicular to the cross-

flow velocit; V), (sketch (c)),
C 3
n s r
(C ) =5 + i | (2.23)



For a winged-elliptic cross section with the semimajor axis ¢ and wing planform per-

pendicular to the crossflow velocity ¥, (sketch (d)),

n’ =L (k2 +a?) (2.24)
C, ab ! ’
0/SE
where
(@ + b)?
k=0 - 40, :

0y =—;(S +./s? + b? -a’)

For a winged-elliptic cross section with the semiminor axis b and wing planform per-

pendicular to the crossflow velocity ¥, (sketch (e)),

2 N IR 2.25)
Cn ab 2 )
o/sB
where
+ 2
k2 =g, - (a402b)

gy =-%(s+\/s"' + a? —b’)

For an elliptic cross section without a wing (e.g., ref. 37),

o

(—C") =2 cos? ¢ + b n2 ¢ . (2.26)

n b a
o/sB

where ¢ is the angle of roll about the body longitudinal axis, being 0° with the semimajor

axis a perpendicular to the crossflow velocity and 90° with the semiminor axis b perpendic-

ular to the crossflow velocity (see sketches (d) and (e)).

24.2 (C,/C, ) formulas— From Newtonian impact theory, (C,/C, )

0 Newt 0 Newt
expressions also have been derived for winged-circular and winged-elliptic cross sections (see
appendix A).

For a winged-circular cross section with the wing planform perpendicular to the cross-

flow velocity F;, (sketch (c)), we obtain, from equation (A10),

18
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Cp 2\r 3 (2.27)
O/ Newt

For a winged-elliptic cross section with the semimajor axis ¢ and wing planform per-

pendicular to the crossflow velocity ¥, (sketch (d)), we obtain, from equation (A16),

Cn _3 -b? /g2 b? 1 s
(070_) 2 Vi =i (H 1 3’)+1- o a7
N

ewt

(2.28)
For a winged-elliptic cross section with the semiminor axis b and wing planform

perpendicular to the crossflow velocity ¥}, (sketch (e)), we obtain, from equation (A21),

Cn\ _3 V— . ( a ) 1 s
(_5_ @) - 177 " ) @1t @

"l

»‘rom Newtonian impact theory, an expression for (Cnlcno )N also has been derived
ew

for winged-square cross sections with rounded corners (sketch (f)). From equation (B15),

"'5’“' Cn _3fs Kk 7 ,
b w | . ] 2 W'i) Vi 0<k<0S @30
O/Newt

r=kw
where the equivalent diameter (from eq. (B12)) is

d= 2w'|/_l_'_ﬂ;'“_)k (2.31)
Wl

Sketch (f)

2.4.3 Values of (Cn/'Cno)SB and (C,/C, )N — From equations (2.23) through
wt
(2.29), values of (Cn/Cn ) and (Cn/cn ) were computed for circular and elliptic
0 SB 0 Newt
cross sections alone and with wings. The results are plotted and compared in figures 7
through 10.
In figure 7, the variation of (Cn/Cno) with axis ratio a/b is given for an elliptic cross

section without wings. As previously noted in reference 9, values of (C,,/Cn ) from
o

19

-

Bt s, s o ¢



o RO, WS TR £ T

slender-body theory are reasonably close to those from Newtonian theory for many a/b
values of interest.

In figure 8, the variation of (Cn/cno) with the ratio of wing semispan s to body radius
r is given for a winged-circular cross section. For s/r < 2, the values from both theories are
reasonably close, but with further increase in s/r, the values of (Cn/Cno)SB greatly exceed
those of (C,,/C,, )

In figure 9,0 vé\{s:; of (C,/C,, ) are presented for a winged-elliptic cross section with the
semimajor axis a perpendicular t: the crossflow velocity V,,. For the axis ratios of a/b = 2
and 3, the figure gives the variation of (Cn/cno) with the ratio of semispan s to semimajor
axis a. As either a/b or s/a increases, the disagreement between the resvlts from the theories
increases.

In figure 10, values of (Cn,’Cno) are presented for a winged-elliptic cross section with
the semiminor axis b perpendicular to the crossflow velocity ¥,,. For axis ratios of a/b = 2
and 3, the variation of (Cn/Cno) with s/b is given. There is closer agreement between the
values computed from the two theories for this cross-sectio 1 arrangement than for the
arrangement where the semimajor axis and wing are perpendicular to Ve

Table 3, taken from reference 9, shows the variacion of (Cn/CnO)Newt with corner
rounding k for square cross sections. The values of Cn/Cno computed from slender-body

theory are reasonably close to those computed from Newtonian theory (eq. (2.30)).

TABLE 3.— Cn/Cno FROM NEWTONIAN THEORY FOR SQUARE CROSS
SECTIONS WITH ROUNDED CORNERS

k 0 0.05 0.1 0.2 0.3 04 0.5

C
[Cn,

C 1.33 1.29 1.25 1.17 1.11 1.05 1.00

n

Corresponding values from slender-body theory vary from 1.19 at £ = 0 (no corner

radius) to 1.00 at k = 0.5 (completely circular cross section).

2.5 Relative Influence of Crossflow Terms

It is interesting to examine briefly the relative influence of the potential and viscous

crossflow terms in the equations for Cy and Cm. For demonstration, Jorgensen (ref.9)
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compared the magnitudes of the terms for an ogive-cylinder body of fineness ratio 11
({y/d = 5) at = 0° to 180° and M, = 2.9. The computed values (by eqgs. (2.12) to (2.14))
are presented in figure 11. For this body, the viscous crossflow term contributes most of the
normal force at high values of « and, of course, all of the normal force at a = 90°. Although
the slender-body potential term contributes relatively little to CN at high a, it has a signif-
icant influence on C,,.

The results in figure 11 are indicative of those computed for most slender bodies
(ref. 9). However, as shown in chapter S, the relative contributions of the crossflow terms

can be modified considerably with the addition of thin lifting surfaces (wings and tails) to a
body.
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CHAPTER 3
METHOD APPLIED TO BODIES OF REVOLUTION

In recent years, there has been renewed interest in the basic aerodynamics of slender
bodies of revolution because of emphasis on achieving more maneuverability from missiles.
Some designs that use thrust-vector control systems are being considered for missile flight at
angles of attack ranging from 0° to 180° (e.g., refs. 15, 15, and 62). We will now assess the
prediction method of chapter 2 by comparing predicted with measured longitudinal aero-

dynariic coefficients for various bodies of revolution.

3.1 Cone-Cylinder and Ogive-Cylinder Bodies at M, = 2.9

We will compare predicted longitudinal aerodynamic coefficients with those measured
by Jernell (ref. 63) for a series of three cone-cylinder and four ogive-cylinder bodies at
a=-5° to 180°. The free-stream Mach number is about 2.9 (Jernell quotes 2.86), and the
Reynolds number based on body diameter is about 1.25X10%. The bodies with various nose
and aftersection fineness ratios were tested in the NASA-Langley Unitary Plan Wind Tunnel.

Figure 12 shows the seven bodies considered along with values of the geometric param-
eters required to compute the aerodynamic characteristics. For the cone-cylinder bodies
(numbers 1-3), all of the geometric parameters are easily computed, but for the bodies with
tangent ogive noses (numbers 4-7) the required values of Ap/d2 , V3[d?,x /d,and A sld? are
not so easily obtained. Some convenient formulas (from ref. 9) for computing these param-
eters for tangent ogives are given in appendix C.

Fquations (2.12) to (2.15), (2.18), and (2.19), along with the procedure outlined in
chapter 2, have been used to compute the variation of Cni Cys Cm and xac/fl with o« for the
seven bodies considered. The values of C Ag=¢° and C A g= 18¢° used in equations (2.18)
and (2.19) were computed in reference 9 with the assumption of turbulent boundary-layer
flow. (Jernell (ref. 63) states that “‘boundary-layer transition was effected’ by artificial trips
throughout the « range.) The values include the contributions of fore pressure, base pres-
sure, and the turbulent skin friction. The reader who wishes to make similar calculations is
referred to reference 9. No attempt was made to estimate effects of wind-tunnel support

interference.
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In figures 13 to 16, computed values of Cp;, Cy4, and C,, as a function of « are
compared with the experimental results for the seven bodies. Generally, there is close
agreement of the computed with the measured results, especially in the variation of Cj; and
C,, with a. As expected, because of the approximation formulas used to predict C 4 with a,

the poorest agreement is between the predicted and measured values of C4.

It is satisfying to find that effects of afterbody fineness ratio, nose fineness ratio, and
nose shape on Cy and C,, are predicted so well. Generally the magnitudes of Cy and C,),
increase with an increase in fineness ratio, just as the computed results predict. Figure 13
shows the effect of afterbody fineness ratio for cone-cylinder bodies, all with fineness-
ratio-3 conical noses. Likewise, figure 14 shows the effect of afterbody fineness ratio for
ogive-cylinder bodies, all with fineness-ratio-5 ogival noses. Figure 15 shows the effect of
nose fineness ratio for ogive-cylinder bodies, and figure 16 shows the minor effect of change
in nose shape from conical to ogival for a given nose fineness ratio of 3.

In figure 17, computed positions of aerodynamic normal-force center (symbols) are
compared with measured positions (lines from ref. 63) for the seven bodies at M, = 2.9.
The positions, xaC/Q, are measured from the nose tip of each body in terms of the body
length. As for the Cj; and C,, results, the agreement of the computed with the measured
values is reasonably close, especially for a near 90°. Note that symbols are used to denote
computed values because only lines are given in reference 63 to denote the measured results.

To assess the analytical method, plots of C,, versus a may be omitted if plots of both
C’N and Xgc Versus o are included. Hence, for conciseness, plots of Cm versus o are omitted
in the remainder of this study. Because precise prediction of C4 versus a is beyond the

scope of this study, plots of C 4 versus a are also omitted.

3.2 Ogive-Cylinder Bodies at M, = 0.6 t0 2.0

As shown in the previous section, the analytical method predicts the aerodvnamic
coefficients reasonably well for various cone-cylinder and ogive-cylinder bodies at a super-
sonic Mach number of 2.9. We will now assess the method of predicting the Cp and x,,.
results for four ogive-cylinder bodies at a = 0° to 60° throughout the Mach number range
from 0.6 to 2.0 (M, = 0.6,0.9, 1.2, and 2.0).
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Sketches of the four bodies considered are shown in figure 18. Bodies N,C, and N,C,
were previously tested by Jorgensen and Nelson (ref. 16) in the NASA-Ames 6- by 6-Foot
Wind Tunnel. Recently, these same bodies were retested in the same tunnel at M, = 0.6.
They were also retested at M, = 0.6, 0.9, 1.2, and 2.0 with cylindrical extensions attached
to the aftersections. Cylinder C,, two diameters long, was attached to body N,C, to form
body N,C,C,, and cylinder C,, four diameters long, was attached to body N,C,; to fonn
body N,;C,Cs. Thus, the bodies include nose fineness ratios of 2.5 and 3.5 (noses N, and
N,), aftersection fineness ratios of 7, 9, and 11 (aftersections C,, C,C,, and C,C,), and
overall fineness ratios of 9.5 (V,C,), 10.5 (N,C,), 12.5 (N;C,C,), and 13.5 (N,C,C3).

In figures 19-22, computed values of CN and (£ ~ xac)/d as a function of « are com-
pared with the measured results for the four bodies. The aerodynamic normal-force center,
K- xac)/d, is measured forward on each body from its base in terms of its body diameter.
For bodies N, C, and N,C, (figs. 19 and 20, respectively), the results for all Mach numbers
are compared on the same plots, and one can observe, at a given value of «, the variation of
Cy and (- x,.)/d with M. For the longer bodies, N,C,C, (fig.21) and N,C,C,
(fig. 22), the results for each Mach number are compared on a separate plot. With these
separate plots, there is less confusion in nparing predicted with measured values of
R~ xg0)d.

Generally, the variation of Cj; with a is predicted closely for each body throughout the
a and M, ranges considered. At the lowest Mach number, M, = 0.6, the Cj; values previ-
ously measured (ref. 16) for the shortest body, N, C,, are believed to be erroneous (fig. 20).
The values from the retest agree closely with the predicted results.

The aerodynamic normal-force centers are predicted best for the supersonic Mach
numbers. Generally, for the subsonic Mach numbers, the predicted aerodynamic centers are
more rearward on the boaies than the measured cent.ers. For all Mach numbers and low
values of «, the agreement of the predicted with the measured positions probably should be
better than shown. The force and moment balance located inside each body was chosen to
measure the large normal forces and pitching moments expected over the high a range.
Thus, the accuracy of the experimental aerodynamic centers (determined from Cm/CN) at
the low values of « is somewhat less than at the high values, and there is more scatter in the

data.

24

————



~
e, et

In this study, we have concentrated primarily on predicting the static aerodynamic
characteristics for bodies at high angles of attack. For bodies at low angles of attack, more
theoretically exact prediction methods have been proposed. For example, for angles of
attack less than about 20°, Perkins and Jorgensen (ref. 4) have shown that the agreement of
theory with experiment at supersonic Mach numbers cin be improved by replacing slender-
body potential theory (e.g., the first term in eq. (2.10)) with Van Dyke’s hybrid theory
(ref. 64) or Tsien’s linearized theory (ref. 65). They also suggest the use of an erpirical
modification to the viscous crossflow theory (e.g., the second term in eq. (2.10)). In this
modification, an experimentally determined correlation curve for the distribution of the
crossflow drag coefficient along the body length is used when there is laminar crossflow. It
is questionable whether the extra computation needed in these more detailed methods is
warranted for most engineering studies. However, if an accurate loading distribution over a

body length is desired, a more detailed method should be considered (ref. 4).

3.3 Predicted Effect of Change in Crossflow Reynolds Number

from Subcri‘ical to Supercritical

At present there is a general lack of aerodynamic data for which predicted results can
be compared for bodies of revolution at supercritical crossflow Reynolds numbers and
subcritical crossflow Mach numbers. Jorgensen (ref.9), however, has computed results
which demonstrate what can be expected for a slender body of revolution. The body chosen
for study consists of a tangent ogive nose of fineness ratio 5 with a cylindrical aftersection
of fineness ratio 6 (body 7 in fig. 12).

For free-stream (and crossflow) Mach numbers less than about 0.4, the variation of CN
and x,./2 with « has been computed for free-stream Reynolds numbers of 10° 10%, and
107, and the curves are shown in figure 23. There is a significant effect of Reynolds number
on both CN and xac/Q throughout most of the a range. These curves, of course, redlect the
strong influence of crossflow Reynolds number Re,, on crossflow drag coefficient Cdn for
two-dimensional circular cylinders (see fig. 2).

As shown in figure 2, Cdn for a circular cylinder drops considerably as Ren increases
from 105 (subcritical) to 10® (supercritical), and then there is a gradual rise as Re,, increases

from 10° to 107 (in the supercritical range). There is much more uncertainty in the magnitude
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of Cd" at supercritical Re,z (such as 10° and 107) than at subcritical Re, (values less
than about 2X10%), and the shading in figure 2 indicates the uncertainty be cause of scatter
in known data.

In figure 23, the shaded bands in the Cj; and x,./% curves for Re = 10° reflect the
uncertainty in these curves resulting from the scatter in the Cdn data shown in figure 2. It is
clearly evident, however, that this uncertainty in the curves is relatively small compared
with the large effect of change in Reynolds number.

Figure 23(b) shows the ratio of Cj; for the body at Re = 106 and 107 to Cn for the
body at the subcritical Re of 10%. With this figure the effect of Re can be studied through-
out the « range: for example, at a near 90°, the body at Re = 10¢ develops only about
25 percent of the Cp; developed at Re = 10%, but at a < 10°, 100 percent of the Cy is
developed. Similar study of the movement of x,./2 with change in Re can be made with the
use of figures 23(c) and (d).

Although no experimental data are available with which to compare these predicted
effects for bodies of revolution, there are limited data for an early version of a noncircular
space-shuttle body (ref. 66). Jorgensen (ref. 9) predicted some experimental trends (ref. 66)
showing the decrease in Cp; with a that results from an increase in crossflow Reynolds

number from subcritical to supercritical.
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CHAPTER 4
METHOD APPLIED TO BODIES OF ELLIPTIC CROSS SECTION

We now compare predicted with measured normal-force and normal-force-center char-
acteristics for three bodies of elliptic cross section at a = 0° to 50° and M, = 0.6 to 2.0.
First, we introduce the bodies considered, review the experimental test conditions, and

present the equations used to compute Cy, and C,, for each body.

4.1 Bodies Studied and Tests at M, = 0.6 to 2.0

Figure 24(a) shows the three bodies of elliptic cross section considered here. Planform
views of the bodies as they were oriented (in five different configurations) for the tests are
shown in figure 24(b). All of the bodies were tested previously and the results presented in a
data report (ref. 18).

The basic circular body B, consists of a circular-arc tangent-ogive nose of fineness
ratio 3 followed by a cylindrical aftersection of fineness ratio 7. Bodies B, and B; have
elliptic cross sections, and they have the same length and axial distribution of cross-sectional
area as B, . Hence the fineness ratio of 2/d = 10 for B, is also the equivalent fineness ratio
for B, and B, and all bodies have equal volumes. For B,, the ratio of the semimajor to the
semiminor cross-sectional axis (¢/b = 2) is held constant along the body length. Bodies B,
and B, were investigated in 1958 (ref. 6) only for a = 0° to 20° and M, = 2 to 4. Body B,
(new to the investigation in ref. 18) consists of the same nose shape as B, but has an
afterbody section of variable a/b over four body diameters in length and a constanta/b = 2
over the rear three body diameters (see fig. 24(a)). Photographs of B, in figure 25 enable
one to establish a clearer mental image of this more complex body.

Six-component aerodynamic force and moment coefficients were measured in the
study of reference 18 for these bodies in the Ames 6- by 6-Foot Wind Tunnel. However, in
this study, only the variation of CN and (2 - xac)/d with « is considered.

All bodies were tested at Moo = 0.6, 0.9, 1.2, 1.5, and 2.0 and a = 0° to 58°. For the
data used here, the Reynolds numbers, based on base diameter, are 0.5X10% at M, = 0.6
and 0.9 and 3.8X10% at M, = 1.2, 1.5, and 2.0. The elliptic bodies were tested at ¢ = 0°
(flattest side of nose pitching against the flow) and 90° (see fig. 24(b)).
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4.2 Equations Used to Compute CN and Cm for Each Body

For the general case of a slender body in which the cross-sectional shape varies along
the length, the normal-force and pitching-moment coefficients can be computed from equa-
tions (2.20) and (2.21):

C in?
Cw, = S 2a cos (af2) ¢ Cn Q—ﬂdx+ m f.’l. r dx
N A, C"o dx A, C”o
D SB Newt

0

“4.1)
and
sin 2« cos (of2) ? Cn d4
C,, = — (x,,, - x)dx
-mxgen (%) g,
0 o/sp
2nC, sin? a Q
+ —dn————— —E"— rix,, - x)dx 4.2)
A X o m )
0 0/ Newt

The axial distance from the body base to the normal-force center (see sketch (g)) is
then given in terms of the body diameter by

®- x,0) Cn @-x,)
3 = —--CN + 3 4.3)
o

0° < a<90°

an

Sketch (g)
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As previously discussed, (Cn/CnO)SB in equations (4.1) and (4.2) is the ratio of the
local normal-force coefficient for the noncircular cross section to that for the equivalent
(same area) circular cross section as determined from slender-body theory. The similar ratio

(C"/C"O)N is determined from Newtonian impact theory. From equation (2.26),
ewt

Cn a b
= 2 ) A
(Cn ) b cos® ¢ + Py sin® ¢ 4.
SB

where ¢ is the angle of roll about the body longitudinal axis, being 0° with the semimajor
zxis a perpendicular to the crossflow velocity and 90° with the semiminor axis b perpen-

dicular to the crossflow velocity (see sketches (h) and (i)).

Vi _’.¢=O° Vo —® ¢=90°

@)

Sketches (h) and (i)

From Newtonian theory, for the semimajor axis a perpendicular to the crossflow

velocity Vn, equation (2.28) reduces to

C, -b?/a? b’) i

on + ) + :

(c,,) =3 }f‘u-a?/a i R A My ! B
Newt

(4]

For the semiminor axis b perpendicular to the crossilow velocity ¥, equation (2.29)

reduces to

Cr a’/b’I 1 a? 1
(?r ) @h -1 T Ve @ 40
0/Newt

For the bodies of this investigation, equations (4.1) and (4.2) can be simplified by

int - _ration. The simplified equations, which were used to compute Cys and C,,, values fer
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each body, are presented next. In all the CN and G, equations, empirical input values of n

and Cdn from chapter 2 are used.

4.2.1 Equations for bodies with constant a/b cross sections (bodies B, and B,)— Both
bodies B, and B, have cross sections of constant a/b over the body length. For this

condition, equations (4.1) and (4.2) reduce to

A C A C
CN ( A, sin 2a cos 2)<CNO) + (”Cdn A, sin a) (CN ) 4.7
S8 Newt

(7]
and
V- ApR- x|/ a\ [ Cm
Cn = [ A X ](sm 2a cos 7) (Z.:n—
0/sB
A, [Xp = X C
+ lnc _B(_L"_.__ﬁ) an? ol [ @.8)
[ dp 4, X Cm,
Newt
where

N _(Sm\ (&
(CNO)SB (Cm(,)sa (C”O)SB
)., ), @)
CNO) Newt Cmo Newt Cno Newt

4.2.2 Equations for body with variable a/b cross sections (body By)— Body 3 has a

midsection length of variabie a/b, but the equivalent body of revolution is B, for which

dA/dx = 0 rearward of the nose-cylinder junction. Thus, cquationrs (4.1) and (4.2) reduce to

A C nCy sin® « L C
Cy= —Q-sinZacosg N FO L — _r ridx (49)
N \4 2)\C A C
r N r n
0/ 8Byose 0/ Newt

30



V-4 (2 X C
b o m
Cm = [ J sm 2a cos 2)(6,;_
nose

° SB0se
217Cd sz / C
o (Z’— r(x,, - x)dx 4.10)
New:t
where
CN C C
SB Mo 5B,105¢ "o SB nose
and A b =A b Also, for the bodies studied,
nose

V-Ap®-x,)] [V - Ap®- xy)
AX T A4Ax
nose

Snme potential or inviscid normal force can be vxpected intuitively to be carried over
past the nose shoulder of body By, even though the approximate slender-body term gives
zero normal force over the aftersection. For body B,y at¢ = 90° (fig. 24(b)), the span
increases with length past the nose shoulder, and it might seem reasonable to compute the
slender-body terms for Cy; and C,, based on the maximum span (or base) g. meiry. for

this estimation,

CN 1€y sin? « L C
Cn = ( sin 2a cos + n rdx (4.11)
2 CNo A, Cp,
SB 0/Newt

b

and

V- ApR-xp)p /. a\/Cm
Cm = l“—ﬁ———] (sm 20 cos 'f) (Z,-”—'-—
0/sp

2nCy sin? & C

+ —r (—l) rx,,, - x)dx 4.12)

A m :
Newt
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where
(fﬁ) _ (.C_m_> _ <_C1)
C C C
N, n
o/sp, \"olsp, o/sB,

4.3 Comparison of Con-puted With Measured Normal-Force and

Normal-Force-Center Characteristics

In figures 26 through 28, computed valuer of Cy and (£ - xac)/d versus « are com-
pared with measured values (from ref. i8) for the bodies studied. The comparisons are made
for the bodies at o = 0° to 60° and free-stream Mach numbers of 0.6,0.9, 1.2, 1.5, and 2.0.

4.3.1 Bodies with constant a/b cross sections (bodies B, and B,)— Generally, there is
reasonably good agreement in figure 26 of the computed with the measured results for
bodies B, and B, (bodies of constant a/b along the length). The agreement is, however,
better at tlie supersonic Mach numbers than at the subsonic. These comparisons, along with
previous successful comparisons in chapter 3, tend to validate the prediction method as a
useful tool in body aerodynamic studies, at least for bodies with circular and elliptic cross
sections of constant a/b.

4.3.2 Body with variable a/b cross sections (body B;)— As for bodies B, and B,, the
predicted characteristics for body B, (with variable a/b) agree reasonably well with the
measured results (fig. 27). However, the prediction of C, generally is not as close as for bodies
B, and B,. The prediction of (£ - xac)/d at high a is rem.rkably close, especially at super-
sonic Mach numbers. This close prediction of (R - xac)/d’ however, might be somewhat
fortuitous since .he prediction of Cp is rot nearly as close.

The preciction of Cp; with a is least accurate for body B3 oriented at ¢ = 90°. Gen-
erally, for this case, Cy; is underpredicted at the lower values of « throughout the M, range.
At the subsonic values of M, Cp, is underpredicted over the entire o range studied.

Note that these predictions were made with equations (4.9) and (4.10), which do not
account for any potential or inviscid lift rearward of the nose secticn. Intuitively and
analytically (ref. 64), some inviscid normal force can be expected to be generated rearward
of the nose. This is especially true for body B; at ¢ = 90° because the span increases with

length past the nose, and it might seem reasonable to estimate the slender-body
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potential-flow terms for Cp; and C,,, based on the maximum span (see eqgs. (4.11) and
(4.12)). When the maximum span estimate is used, the prediction of C; with a improves
somewhat (see fig. 28). However, the prediction of (2 - x,0)/d with a deteriorates since the

predicted values of (£ - xac)/d move well forward of the measured values (fig. 28).
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CHAPTER 5
METHOD APPLIED TO BODY-WING AND BODY-WING-TAIL CONFIGURATIONS

We now compare predicted with measured normal-force and normal-force-center char-
acteristics for three body-wing configurations and three body-wing-tail configurations at
a=0° to 60° and M, = 0.6 to 2.0. First, we introduce the configuration models tested,
review the experimental test conditions, and present the methodology used to compute Cy

and G, for each model.

5.1 Configurations Studied and Tests at M, = 0.6 to 2.0

In references 20 and 21, many body-wing and body-wing-tail model combinations were
tested. Planform views of the model components tested in the many model combinations
are shown in figure 29. These components include a basic circular body B, an ellipticbody
B, with a/b = 2, five flat-plate wings (W, to Ws), and a combination horizontal and vertical
tail 7. The bodies B, and B, are two of the bodies considered in chapter 4 (see fig. 24(a)).
All the wings were designed to have the same planform area (16 d?) if the wings extended
into the body B; to the axial centerline. Based on the phantom wing chord at the body
centerline, the taper ratios for wings W,, W,, and W, were 0, 0.25, and 0.50, respectively
(fig. 29(a)). They were also 0.25 for W, and W (fig. 29(b)). Wings W,, W,, and W,
(fig. 29(a)) had an aspect ratio of about 4; wings W,, W,, and W, (fig. 29(b)) had aspect
ratios of about 5, 4, and 3, respectively. Pertinent planform dimensions of the e~posed parts
of the wings are given in tables in figure 29. The tail dimensions are given in figure 29(a).

Many combinations of these bodies, wings, and tail were tested (refs. 20 and 21) in the
Ames 6- by 6-Foot Wind Tunnel at « =0° to 58° and M_, = 0.6 to 2.0. The Reynolds
number, based on body diameter d, was about 4X105.

Results from these tests (refs. 20 and 21) showed that changing wing taper ratio from 0
to 0.5 changed the aerodynamic characteristics very little. Also, changing wing aspect ratio
from 3 to 5 changed the aerodynamic characteristics very little. Thus, to achieve more
conciseness in the present investigation, only three body-wing configurations and three
body-wing-tail configurations were considered.

Planform views of the configurations studied in the present investigation are shown in

figure 30: the basic circular body B, with wings of aspect ratio 3 and 4 (W and W,,
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respectively) and the elliptic body B, with the wing of aspect ratic 3 (W;). These configura-
tions (B, Ws, B, W,, and B, W) were also investigated with the tail T attached (configur-
ations B, WsT, B, W, T, and B, WsT).

5.2 Methodology Used to Compute Cpyand C,,

From equations (2.20) and (2.21), we obtain

Cn, = sin 2« cos (a/2) 2 E_n_ d4 dx
N A4, C, | o
0/sB

2nCy sin® a L/c
n _n 5.1

r noj
A Newt

and

(o]

N 272Cdn sin? a _Cﬁ_ e - o 52
A4, X ¢, m - ’
0/ Newt

(4}

4
_ sin 2a cos (a/2) _Cl d4 _
Cm = AI'X f (Cn > ax (xm x)dx
A SB

The first terms represent the CN and Cm values from slender-body potential theory;
the second terms represent the values from the viscous crossflow method modified by
Newtonian theory. The first terms are not applicable, as written, for body-wing sections
where the body dA/dx values are zero or negative. Also, for body-wing and body-wing-tail
configurations, more comprehensive methods from potential theory a:e available.

For this study, the first-term (potential) contributions to Cy; and C,, were computed
from the linear method presented in NACA Report 1307 (ref. 38). This method, referred to
as the N-K-P method (for Nielsen, Kaattari, and Pitts), is restricted to bodies of circular
cross section with wings and tails that do not have swept-forward leading edges or swept-
back trailing edges. It is further restricted to small angles of attack and small angles of wing
and tail incidence in which the forces are linear with angle. To obtain the wing-body

interference, certain factors are defined that are the ratios of the lift on the components in
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combination to the lift on the wing alone. These ratios are obtained primarily by slender-
body theory, but the wing lift is obtained by liiiear potential theory. Wing-tail interference
is treated by assuming one completely rolled-up vortex per wing panel and evaluating the
tail load by strip theory.

To combine the N-K-P method with the crossflow method, the N-K-P potential terms
must be multiplied by a correction factor (sin 2a)/2a to produce a more correct type of
nonlinear behavior to these terms and to eliminate the potential contribution as a = 90°.

With his modification,

sin 2 2nCdn sin? « L /0
— n
Cy = (Cy) P 3% + N (CT) r dx (5.3)
A o Newt
and
. 2nCy sin* a M s
. sin 2o n *n _
Cm = (Cm)N-K-P 3ol + ArX (Cn ) r(xm x)dx (5.4)
O7 Newt

Since the N-K-P method is restricted to bodies of circular cross section with wings and
tails, a further assumption must be made tu estimate potential theory values of Cpy and Cm
for noncircular bodies with wings and tails. The local widths of the noncircular body in
planform are replaced by the local diameters of a circular body, thus keeping the overail
wing and tail spans constant (see sketch (j)). The crossflow method, of course, requires no

such assumption for noncircular bodies.
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For the way in which the crossflow method is formulated in chapter 2, values of
crossflow drag coefficient Cdn for a circular cylinder are used. As shown in figurc 1, there is
considerable variation of Cdn with crossflow Mach number M,, for values of M,, from about
0.4 to 3. Also for M, less war about 0.5, there is considerable change in Cd" as the
crossflow Reynolds number Re,, exceeds the critical value of about 2X10% (figs. 2 and 3).
These variations of Cdn with M, and Re, may be expected for near-circular bodies, but
surely not for very flat bodies or winged bodies. From the data available, values of Cdn for
flat bodies and plates do not appear to change nearly as appreciably with M, and Re, over
the ranges shown in figures 1 and 2 (see, e.g., refs. 41, 66, and 67). Thus, for the body-wing
configurations, it is likely that a constant value of Cdn will give closer agreement of theory
with experiment, especially at a where M,, is near or in the transonic regime.

For flat-faced, two-dimensional configurations, reasonable values of crossflow drag
coefficient can be computed from Newtonian or modified Newtonian theory (see, e.g.,

table 1 and ref. 66). For circular cylinders at low subsonic and hypersonic M

n» Values of Cdn

computed from Newtonian or modified Newtonian theory also agree reasonably well with
experiment (see fig. 1). In this study, modified Newtonian theory is used to compute the
circular-cylinder C4 value that is substituted into equations (5.3) and (5.4).

n

From modified Newtonian theory,

2
C; =zC
dy = 3 Pstag

=1.2 foGC = 1.8
stag

For M,, > about 4’Cpst ~ 1.8 from perfect-gas relations (e.g., ref. 68). In this study for
ag
wiig-body and wing-body-tail configurations, it is assumed that C4 = 1.2 for all values of
n
Mn (and hence, M_,).
The axial distance from the body base to the normal-force center is given (in body

diameters) by

":d_£ - g_’ﬂ + ® "dxm) (5.5)
N

{

In this study, we present normal-force centers instead of C)y, values.
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The entire method has been computer programmed for Ames Research Center by
Nielsen Engineering & Research, Inc., Mountain View, Calif. The program is similar to those
given in reference 69, and it combines essential parts of the N-K-P and crossflow programs in
reference 69. It is written in Fortran IV for the CDC 6600 or 7600 machines. No tapes,
drums, or disks other than the standard input/output units are required. The running time

for a typical case is less than 1 sec.

5.3 Comparison of Computed With Measured Normal-Force and

Normal-Force-Center Characteristics

In figures 31 through 36, computed values of CN and (R - xac)/d Versus o are com-
pared with measured values (refs. 20 and 21) for some of the body-wing and body-wing-tail
configurations studied. As for the bodies alone, the normal-force coefficients are based on
body cross-sectional area at the body base. Of course they can be easily converted to the
more often used exposed wing planform area by dividing by A, /Ay, where 4, /A p=1592
for the bodies with W and 16.49 for the bodies with W, . The comparisons are made for the
configurations at a = 0° to about 60°. For configuration B, W5, M, = 0.6,0.9, 1.5, and 2.0
(fig. 31). For the other configurations (B, W,, B,Ws, B\WsT,, B,W,T,, and B,W;T),
My, = 0.6 and 2.0.

5.3.1 Body-wing configurations— Let us first look at the results in figure 31 for the
circular body B, with the aspect ratio 3 wing Ws. At M, = 0.6 (fig. 31(a)), the measured
Cy values are predicted closely by the modified N-K-P potential method only for o« up to
about 10° or 15°. Then this potential method overpredicts Cp for most of the higher «
range considered. With even the potential method overpredicting Cp» the combination of
the potential and crossflow methods greatly overpredicts Cy- [t s to be expected, however,
that at « near 90° the combination method should predict C)y reasonably well, since Cyis
given entirely by the crossflow method (modified Newtonian impact theory) at a = 90°.
Despite the difficulty in predicting Cy over most of the high a range, the positions of the
normal-force center are predicted closely by the combination method.

With increase in Mach number to M., = 0.9, the comparisons of computed with mea-
sured results are not significantly improved (fig. 31(b)). In fact, the normal-force centers are

not predicted as closely as at Mo, = 0.6. Not until the free-stream Mach numbers become
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supersonic do the modified N-K-P and combination methods give reasonable estimates of
Cy- At My, = 1.5, the measured Cpy; results are only underpredicted a small amount by the
modific d N-K-P method for o up to about 30° or 40° (fig. 31(c)). At M, = 2.0. the CN
results are predicted best by the combination method throughout the « range studied,
although the experimental results are still overpredicted by this method (fig. 31(d)). It
appears that the combination method should improve in its ability to predict Cp; as M,
increases throughout the supersonic range.

With increase in wing aspect ratio from 3 to 4 (configuration B, W to B, W,), the
comparisons generally are not changed significantly. As shown in figure 32(a), for M, = 0.6
the modified N-K-P and combination methods still overpredict C, significantly at high a. In
fact, the overprediction for B, W, is greater than for B, W, (compare figs. 31(a) and 32(a)).
As for the lower-aspect-ratio configuration, the Cp; results are predicted best by the com-
bination method as the Mach number is increased to M, = 2.0 (fig. 32(b)).

When the body cross section is changed from circular to elliptical with the same aspect
ratio 3 wing (configuration B, W; to B, Ws), the Cy results for M, = 0.6 are predicted
closely (possibly fortuitously) by the modified N-K-P method (fig. 33(a)). As before, when
the Mach number is increased to M., = 2.0, the combination method still gives the best Cy;
prediction throughout the « range (fig. 33(b)).

The break or sigrificant deviation trom linearity in the C) curve with increasing angle
of attack at the subsonic Mach numbers makes it extremely difficult to formulate a rational
method for predicting C; throughout the high o range. This break is attributed to flow
separation over the wing upper surface. For wings of generally lower aspect ratio and higher
leading edge sweep than those studied here, the break has been attributed to vortex break-
down near the wing trailing edge of vortices shed from the leading edge. Vortex breakdown
or bursting has been studied rather extensively by Wentz and Kohlman (ret. 70) for thin
delta and modified delta wings with sweep angles from 45° to 85° at lew speed. They have
observed that as a increases the position of vortex bursting of the trailing vortices moves
upstream toward the trailing edge and crosses the trailing edge at a specific a. Above this a,
a loss of lift occurs on the wing due to vortex bursting, and the effect becomes progressively
larger as o increases. Mendenhall and Nielsen (ref. 71) have more recently collected data

from several investigators for the a value at which vortex bursting occurs at the trailing edge
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of delta wings tested at low speeds. They were unable to correlate the data and suggested
that the factors which control vortex bursting were not reproduced or controlled between
the various sets of test data. The wings used in the present investigation were generally
swept less than those studied by Wentz and Kohlman (ref. 70) and Mendenhall and Nielsen
(ref. 71). However, a 45° delta wing similar to that of W, (fig. 29(a)) was investigated by
Wentz and Kohlman (ref. 70). For this wing they failed to observe vortices, but they, of
course, measured a loss in CL with increase in a over a particular value (near 20°). Despite
the interesting research thus far, it seems that further research into the factors that control
vortex bursting and flow separation is needed. The Cy,; versus « data presented here indicate
that this is especially desirable for subsonic Mach numbers. Some initial exploratory flow-
field pictures from recent vapor-screen and oil-flow tests are presented in chapter 6.

3.3.2 Body-wing-tail configurations— Now consider the results for the same body-wing
combinations but with the tail added (fips. 34-36). Generally, the comparisons of computed
with measured results indicate similar trends as for the body-wing configurations. At
M, = 0.6 and for the circular body B, , the Cp; results over most of the investigated o range
are underpredicted, even by the modified N-K-P method (figs. 34(a) and 35(a)). With change
to the elliptic body, however, the Cy, resuits (for B, W T) are closely predicted up to a near
50° (fig. 36(a)). At M, = 2.0, the CN results are predicted besi by the combination method

(modified N-K-P plus crossflow), although as for the body-wing configurations the measured
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results are still overpredicted (fig. 36(b)).

With the addition of the tail, there is generally more movement of the aerodynamic
center (2 - x,./d) with a at My, = 0.6 (compare, e.g., results for B, Wy and B, W,T in
figs. 31(a) and 34(a)). This movement, wiich takes place at a from about 10° to 40°, is only
partially predicted by the combination method. It may be attributed to forebody and wing
wake flow over the tail. Further investigation of the forebody and wing wake flow over the
tail appears to be desirable.

From the comparisons presented, it seems obvious that the methodology presented
here represents only an initial step into the complex problem of predicting the acrodynamic
characteristics of body-wing and body-wing-tail configurations to very high angles of attack.
The reader interested in this field may wish to study several other initial approaches such as

those of Mendenhall and Nielsen (ref. 71) and Axelson (ret 72). One should also include the

40



PO
—
-— e —

Polhamus suction analogy for wings (ref. 73) and some of its various adaptations and exten-
sions (e.g., refs. 71, 74, and 75). Much additional research is necessary in the high « field,
and this research initially should include visual observations of the flow fields. In chapter 6,
we will show some of the photographs obtained from an exploratory visual study of the

flow over bodies alone, bodies with a wing, and bodies with a wing and a tail.
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CHAPTER 6
VISUAL OBSERVATION OF FLOWS OVER MODELS

It is a well-established fact that as the angle of attack (or incidence) of a model is
increased above about 5° or 10° some flow separates from the upper surface, and vortices
and/or regions of flow separation are formed. The basic vortex phenomena are easily
described by referring to a body of revolution (see sketch (k)). At low to moderate angles of
attack, two vortices are shed from the pocinted body, and the vortex formation is sym-
metrical (e.g., refs. 2, 5, 6, 13, 25, and 27). With further increase in angle of attack, the
vortex formation may become somewhat asymmetrical. At some higher angle of attack, the
feeding vortex sheets tear, and three or more vortices may appear (depending on the model
geometry and free-stream flow conditions as well as angle of attack). Both symmetric and

asymmetric vortex formations are illustrated in sketch (k). Although generally illuminating

D

Symmetric vortex formation

Asymmetric vortex formotion and b.-eckoway

Sketch (k)
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in concept, the illustrations in sketch (k) are somewnat simplistic, and further observations
of vortex formations over many bodies alone and with wings and tails at various freestream
flow conditions are desirable.

For observing the vortex formations over many models, the “vapor-screen technique”
(e.g., refs. 2, 6, 76, and 77) is very useful and much less time-consuming than the more
detailed pressure-probe-survey techniques (e.g., refs. § and 25). In this study, we have used
the vapor-screen technique to observe the vortex formations over many of the same model
configurations considered in chapters 3 through 5. In addition, we have added several cgival
noses of different fineness ratio that attach to the body and body-wing-tail combinations
previously introduced. To observe surface flow and especially flow sepa.ation positions, the
“oil-flow technique” (e.g., refs. 6, 17, and 76) also has been used for many of the same
configurations.

In this chapter, photographs are presented that show the flows over the various bodies
alone and in combination with a wing and a wing plus tail at « = 10° .0 50°. The free-
stream Mach numbers are 0.6, 0.9, and 2.0, and the Reynolds number is about 4.3X10%
based on body diameter. Before presenting the photographs, we will specify which models
are considered and briefly review the vapor-screen and oil-fiow techniques used for tne tests
in the Ames 6- by 6-Foot Wind 1.unnel.

6.1 Models Considered

The models considered, as in the previous chapters, are identified according to body B,
nose N, cylinder C, cylinder strake S, wing W, and tail T. For the bodies of elliptic cross
section (fig. 24), the roll orientation ¢ is also specified. The configurations investigated and

the figures in this report where the configuration dimensions are given are listed as follows:

Configuration Figure
B, = N,C, 24,37
N,C, 37
N,C, 37
N,C, 37
NyC,S 37
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Conf iguration Figure

B, ¢=0° 24
B, ¢=90° 24
By, ¢=0° 24
B, ¢=90° 24

B,Ws = N,C, W, 29
B,Wy = N,C,W, 29
B,W,T = N,C,W,T 29
N,Ci W, 29,37
NyCi W, T 29,37

Plan-view sketches of these configurations are shown in figur: 38.

Figure 37, which has not been presented before, shows a series of circular-arc tangent
ogive noses that attach to the circular cylinder C,. Noses N,, N,, and N, have fineness
ratios of 3, 3.5, and §, respectively. Nose N, is formed by rounding the tip of a fineness-
ratio-3.5 ogive (such as NV, ) to give a resulting fineness ratio of 3.

The thin wings and tail shown in figure 29 also attach to the cylinder C,, so many
combinations of nose, cylinder, wing, and tail are ; jssible. For this report nnly some

representative combinations are considered.

6.2 Vapor-Screen and Oil-Flow Techniques

6.2.1 Vapor-screen technique— In the vapor-screen technique, the wind tunnel is run
with moist air. In fact, water is added to the airstream as needed. '

For supersonic Mach numbers, as the moist air expands through the supersonic nozzle
into the test section it cools, and the moisture condenses to form a fog. This fog is illumi-
nated by a sheet of bright light produced by high-intensity mercury-vapor lamps and pro-
jected through the tunnel window(s) and across the stream. This sheet of light appears as a
uniformly lighted screen of fog particles in the absence of a disturbance. However, with a
model in the stream the uniform distribution of fog particles is disturbed, and the model
disturbance affects the light scattered by the water particles. Wakes and vortices typically

appear as dark “‘holes” in the screen.



For very high subsonic (M, = 0.9) and transonic Mach numbers, similar dark regions
may appear at the vortex locations, but for lower subsonic flows (M, = 0.6) light (conden-
sation) regions often appear at the vortex locations. There are, in fact . -°s where a light
area will appear above a left wing par.2l and a dark area above the righ -« and both areas
will indicate separated regions and/or vortex flow. The pnysics may not always be simply
explained, but the reader interested in more detail is referred to the treatise of McGregor
(ref. 77).

Figure 39(a) shows a schematic drawing of the vapor-screen apparatus for the Ames 6-
by 6-Foot Wind Tunnel. Two light-source boxes and various camera locations are indicated.
In this study, two light boxes were used for observations at M., = 0.6, but only one was
required for necessary illumination at M., = 0.9 and 2.0. Each box contains six 900-W
mercury-vapor lamps (BH-6) and mirrors to reflect the light through collimating slits. The
light boxes (shown in fig. 39(b)) connect to a common shaft that passes over the tunnel, and
the boxes can be pivoted in tandem and moved so that the light screen can cut the model
longitudinal axis at the desired positions. A Honeywell-Pentax spot light meter was focuscd
on the vapor screen and moved with the light box shown in figure 39(b) to aid in maintain-
ing consistent illumination for the photography.

For the present investigation, a Hasselblad 70-mm still camera (model 500 EL/7) was
mounied on the sting support rearward of the model base (fig. 39(c)). The camera was
enclosed in a protective housing. The gun camera shown mounted above the Hasselblad in
figure 39(c) was not used for this study. All model: were painted black to minimize light
reflection and to improve the quality of the photograohs. The Hasselblad .umera had a
50-mm {4 (wide-angle) lens. and TRI-X (400 ASA) film was used.

6.2.2 Oil-flow technique— Filow patterns on the model curfaces at angles of attack
were visualized through use of the oil-flow technique. In this technique, the mi-dels were
covered with a mixture of oil and titanium dioxide (TiO,) and then run wet in the wind
tunnel. The formula for the mixture was § teaspoons of SAE 30 oil and § teaspoons of
TiO,, with about 3 drops of oleic acid added as an anticoagulant. To provide good contrast
of the mixture with thc models, ail model- were fir:t painted s flat black. Photographs of

the oil-flow patterns on the models were taken during each run with Hasselbtad cameras
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focused through a side window and a special small window at the top of the test section of

the Ames 6- by 6-Foot Wind Tunnel.

6.3 Photographs Obtained from Vapor-Screen and Qil-Flow Techniques

6.3.1 Photographs from vapor-screen technique Photographs taken with the vapor-
screen technique for the models at M, = 0.6, 0.9, and 2.0 are shown in figures 40 to 54.
Figure 40, presented as a prelude to the other figures, identifies some of the various items
that appear in the other figures: the light sheet, light shadow, mcdel support, model base,
vortex regions, vortex feeding sheets, and local shocks. The two photographs in figure 40 are
for body N;C; at a~ 30° and M, = 2.0. Light sheets are shown at the base of the nose
(station 1) and at a more aft cylinder position (station 2). In the remaining vapor-screen
photographs (figs. 41-54), a photograph of the flow field at the body base (station 3) is also
included. The positions of the three flow-field stations are indicated on a model sketch in
each figure. A model shadow similar to that shown in figure 40 usually does not appear on
the photographs for M_, = 0.6. As previously mentioned, at M, = 0.6, two light-source
boxes were used in tandem, and light came from both sides of the wind tunnel.

For a body of revelution (B, =N, C,) at M= 0.6 (fig. 41(a)), the simplistic flow
model of the twa rather tightly rolled-up vortices shown in sketch (k) is not evident, even at
a < 30°. Rather there appear to be separation regions from both sides of the body that seem
to almost coalesce along the lee side but do not roll up. In fact, tvvo narrow separation
sheets very close together appear tu trail back from the nose over the body length. With an
increase in « to about 40°, the separation regions from the nose appear more like the usual
vortex regions. However, these vortex regions are very light in color in contrast to the dark
regions at lower «, and these vortex regions become asvmmetric as they trail back over the
body. Also, more than two regions develop.

With increase in Mach number to M., = 0.9 and 2.0 (figs. 4i(b) and (c)), the more
traditional vortex formations appear, where there are two rather symmetric vortices (dark
holes in the vapor sheet) shed from the body. Along both sides of the body, separation
sheets “feed™ the vortices, and, of course, the vortices grow with movement from the nose
to the base of the body. At M., = 2.0, local shocks from the vortex regions appear
(rig. 41{c)).
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From observation of figures 41 to 43, the effect of increasing nose fineness ratio
from 3 (nose N,) to 5 (nose N3) can be studied. Generally, with an increase in nose fineness
ratio, the vortex formation becomes asymmetric at a lower o. Compare, for example,
photographs for N, C, at o=~ 30° (fig. 41) with those for N;C, at o = 30° (fig. 43). For all
of these bodies, as for the remaining models to be discussed, vortex asymmetry is the worst
at the lowest Mach number investigated (M, = 0.6). Asymmetric flow separation and
vortex asymmetry are accompanied by undesirable side forces (censidered in chapter 7).

When the tip of a fineness-ratio-3.5 nose (NV,) was rounded to make a fineness-ratic-
3 nose (N,), a strange vortex pattern developed at M, = 0.6 for the body N,C, at a = 40°
and 50°. This pattern (fig. 44(a)) consists of two very symmetric vortices from the nose
located above two separation regions stacked one on top of the other (at station 2). The
entire unusual pattern appears to be symmetric even up to a =~ 50°. However, at the higher
Mach numbers (M, = 0.9 and 2.0), the patterns are again similar to those for N, C,; (com-
pare, e.g., figs. 42 and 44).

When strakes were attached to the side of the cylinder C, of body N;C,, the vortex
patterns became more symmetrical for & up to about 30° (compare figs. 43 and 45). How-
ever, at about 40° and above, there was no effect. Apparently, the asymmetric pattern,
originating with the fineness-ratio-5 nose, could not be influenced by the strakes back on
the cylinder. Note that the hand of the asymmetry of the vortices can be either left or right,
and occasionally the pattern will switch even while it is being observed during a test run.

When the body cross section was changed from circular (body B, ) to elliptic (. ' B,
with a/b = 2), the vortex patterns became more symmetric with the body oriented at o°
(flattest side toward the flow). This can be seen by comparison of figures 41 and 4 YW-
ever, when the elliptic body B, was rolled to ¢ = 90°, the vortex patterns became more
asymmetric (see fig. 47).

From tests of body Bj, the body of elliptic cross section with variable a/b, the vortex
symmetry was influenced mostly by the nosc. As shown in figure 48, when B, was oriented
at ¢ = 0° (flattest side of nose toward the flow), the vortex patterns were essentially
symmetric at all test conditions. However, when B, was rolled to ¢ = 90° (thinnest side of
nose toward the flow), the patterns became quite asymmetric at many test conditions (see
fig. 49).
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When wing W of aspect ratio 3 was attached to body B, , the body vortex growth over
the wings was retarded, but extensive regions of flow separation above the wing appeared
(fig. 50). These regions were especially large and diffuse for M, = 0.6 and 0.9 (figs. 50(a)
and (b)). For M_, = 2.0, distinct vortices formed, originating at the forward wing-body
juncture at the leading edge, on the wing upper surface, and at the wing tips. Thus, at the
base of the body there were a pair of vortices from the nose, a pair from the wing-tip
juncture, a pair from the wing leading edge, and a pair from the wing tips (see fig. 50(c)).

In contrast with the flow at M, = 2.0, the flow at M_, = 0.6 is very diffuse, and there is
the possibility that the phenomenon of vortex bursting or breakdown (e.g.. refs. 70 and 71) has
taken place at the higher angles of attack. This phenomenon (mentioned in chapter 5) might
be indicated in some of the vapor-screen pictures by the light-colored diffuse vortex regions.
Such regions can be observed at M, = 0.6 for both bodies alone and with wings, especially at
the higher angles of attack. The phenomenon of vortex bursting might help explain the fact
(demonstrated in previous chapters) that the C), characteristics fcr the bodies alone and with
wings and tail are generally predicted best at the supersonic Mach numbers. The prediction
methods, of course, do not account for this phenomenon.

When wing W, of aspect ratio 4 was attached to body B,, similar flow patterns were
obtained as with wing W5 of aspeci ratio 3. This can be confirmed by comparing the
photographs in figures 50 and 51. Note, however, that the vortices shed from the wing tips
of B, W, at M, = 2.0 lie outside the photograph frames.

With the addition of the tail T to configuiztion B, W,, there were no appreciable
changes in the flow patterns (see photographs in figs. 51 and 52).

When wing W, was attached to body N,C,, the nose-cylinder configuration that
produced the greatest asymmetry at Mo, = 0.6 and 0.9, the vortex asymmetry from the
fineness-ratio-5 ogival nose still persisted (compare figs. 43 and §3). This asymmetry also
persisted when tail T was attached to the configuration (see fig. 54).

6.3.2 Photographs from oil-flow technique— To obtain visual indications of the flow
over the surface of the models, the oil-flow technique was used. Photographs from this
technique support those from the vapor-screen technique in that flow-separation positions

are quite clearly defined. As illustrated in a schematic of a body crossflow plane (sketch (1)),
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oil ridges form near separation regions, and flow symmetry or asymmetry can be correlated

with results from the vapor-screen technique.

_ — Primary vortex region

.-—Secondary vortex region

—> 0il ridges
_— Separation

OV,ﬁVw sSin a

Sketch (1)

Photographs taken with the oil-flow technique for some selected models at M, = 0.6,
0.9, and 2.0 are shown in figures 55 to 65. Both planform and side views are shown at the
specified angles of attack. To avoid a tunnel support at the top of the test section, the
planform views were taken with the camera somewhat off center, so the model planforms
are not completely symmetrical. For convenience in comparing the oil-flow and vapor-

screen photographs, the figures for each technique are indexed as follows:

Oil-flow Vapor-screen
Configuration figures figures
B, = N,(, 55 41
N,C, 56 42
N;C, 57 43
N, C, 58 44
N;C, S 59 45
B, ¢ =0° 60 46
B, ¢ =90° 61 47

49



Oil-flow Vapor-screen

Configuration figures figures
By ¢ =0° 62 48
By ¢ = 90° 63 49
B,W,T = N\,C,W,T 64 52
N;C,\W,T 65 54

The reader, of course, can make detailed observations of the comparable oil-flow and
vapor-screen photographs for configurations of particular interest. Generally, when there is
asymmetric flow separation from a model surface (indicated by the oil flow), there is also
asymmetric arrangement of the vortices in the flow field (indicated by the vapor screen).
Again, note that the hand of the asymmetry can be either left or right. Thus, because the
oil-flow and vapor-screen photographs were not taken simultaneously, it is possible to
observe a left-hand separation asymmetry and a right-hand vortex asymmetry or vice versa.

The observer also should be aware that some local flow disturbances in the oil flow result

St 1T n o s e o

o b

from joints and wax-filled screw holes in the bodies.
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CHAPTER 7
EXPERIMENTAL SIDE FORCES ON MODELS AT  =.0°

When models are pitched to high angles of attack, side forces can occur on the models
even at zero sideslip angle (e.g., refs. 12-21, 78, and 79). These side forces generally occur at
angles of attack between about 20° to 60° and in the subsonic-transonic Mach number
range. They result from asymmetric flow separation and vortex flow over the leeward side
of the models as shown in the photographs presented in chapter 6.

As noted in a recent paper by Keener, Chapman, and Kruse (ref. 78), some aircraft
have been lost due to uncontrolled flight at high angles of attack, and some of the loss in
controllability might have originated from undesirable side forces and yawing moments
attributed to flow separation and vortex asymmetry. Research on this phenomenon recently
has increased considerably because the flight envelopes of modern aircraft and missiles are
being extended into the higher angle-of-attack range.

We will now present and discuss some side-force data obtained recently (refs. 16,
18-21) in the Ames 6- by 6-Foot Wind Tunnel for most of the model configurations
considered in previous chapters (especially chapter 6) and shown in figure 38. For the badies
aione, we will discuss the effects of nose-fineness ratic, Mach number, nose-tip rounding,
afterbody side strakes, and elliptic cross section. Then we will consider the effect of adding

a wing and a wing plus tail to a body.

7.1 Bodies Alone

7.1.1 Lffects of nose-fineness ratio and Mach number— In figure 66, the effect of
nose-fineness :._iio QN/d on side-force coefficient Cy and center position (€ - xsf)/d for
ogive-cylinder bodies of revolution is shown. Both Cy and (2 - xsf)/d (measured from the
body base) are plotted as a function of angle of attack a for a up to 60°. Plots are presented
for Mo = 0.6, 0.9, and 1.2. The models were tested at Mach numbers up to M, = 2, but
there were no side forces above about M= 1.2. The magnitudes of the side forces decrease
with increasing Mach number.

It is readily apparent from figure 66 that the largest side forces were ubtained with the
fineness-ratio-§ nose N, attached to the cylinder afterbody C, (of fineness ratio 7). With

decrease in nose-fineness ratio, the side forces decrease, and they almost disappear over most of
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the o range for the body with the fineness-ratio-3 nose. For body N5 C, (with the fineness-
ratio-5 nose) at M, = 0.6, it has been shown that the maximum value of side force can
become about 40 percent of the normal force (ref. 16). Keener et al. (ref. 78) have recently
shown that the maximum value of CY increases even more (to the order of Cy or greater) as
the Mach number is decreased from 0.6 to 0.25. There is no question that the side-forc2
coefficients increase with decrease in Mach number and/or increase in nose-fineness ratio.
Wardlaw and Morrison (ref. 79) also support these conclusions from their recent correlations
of collected data.

Note that the side-force centers seem to start well back on the cylinder; then as «
increases above about 25°, they move forward onto the nose (see, e.g., fig. 66(a)). At some
much higher a (say about 55° to 60°) they then tend to move back onto the cylinder. Note
also that for N;C,, the body with the largest side forces, the maximum values of Cy are
located well forward on the body.

The side forces can be studied in conjunction with the vapor-screen photographs shown
in chapter 6. In figure 67, the data for Ny C, at M, = 0.6 and 0.9 are plotted along with the
vapor-screen photographs (from figs. 43(a) and (b)) taken at a = 10°, 20°, 30°. 40°, and
50°. The vapor-screen photographs shown in figure-67 were taken at a crossplane station
3.5 diameters forward of the model base. It is obvious that when the vortices become
asymmetric (between a = 20° and 30°) the side forces develop. So long as the vortices
remain steadily asymmetric, the side forces remain. Of course, as shown in chapter 6, an
asymmetric vortex system results from asymmetric flow separation from the body surface.
There is obviously a need to analytically model the instability process that leads to asym-
metric separation, asymmetric vortices, and undesirable side forces.

In lieu of a theoretical method for computing the angle of attack for onset of side
force, experimental procedures must be used. Keener et al. (ref. 78) have found that the
onset angles can be roughly correlated with nose-fineness ratio (or semiapex angle) as
families of curves of constant afterbody. They have fcund that the ang'e >f onset of side
force for a given body is essentially invariant with Mach number, and, for a nose with no
afterbody, the onset angle is given approximately by two times the semiapex angle. The
general effect of increasing afterbody length is to decrease the angle of onset; that is, the

longer the afterbody the smaller the angle at which a side force is first encountered. A
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somewhat similar finding is reported by Wardlaw and Morrison (ref. 79). They also have
produced (ref. 79) a rough correlation of data for the angle of attack at which the maximum
side force is observed. It tends to decrease with increasing Mach number and body-fineness
ratio.

Keener et al. (ref. 78) also have made a rough correlation of data for the “upper-limit”
angle of attack at which the static side force disappears and the wake flow becomes essen-
tially oscillatory like a Karman vortex street from a two-dimensional cylinder. This upper-
limit « also tends to decrease with increasing Mach number, varying from about a maximum
of 80° at M, = 0.25 to a minimum of 50° at M, = 0.9.

1.1.2 Effect of nose-tip rounding— When the tip of a fineness-ratio-3.5 nose (N, ) was
rounded to make a fineness-ratio-3 nose (V, ), the side forces at M, = 0.6 and 0.9 almost
disappeared. This is shown in figure 68 where Cy and its center position are plotted against
a for bodies N, C,, N,C,, and N,C, . As discussed in chapter 6, this nose rounding brought
more symmetry to the flow field. The round-nosed body N,C,, however, appears to be no
better than the sharp-nosed body N, C, of the same fineness ratio (Qyld = 3).

7.1.3 Effect of afterbody side strakes— When strakes were attached to the sides of the
cylinder C; of body N,C, (QN/d = §), the side forces were not significantly changed. As
shown in figure 69, the variation of CY with a was changed somewhat, but the maximum
values of Cy were about the same.

1.1.4 Effect of elliptic cross section— The effect of elliptic cross section and roll angle
on side-force coefficient and position is shown in figure 70. Results are compared for body
B, (a circular body of (2/d =10)) and body B, (the equivalent elliptic body of constant
alb=12) at Moo= 0.6 and 0.9. With the elliptic body B, oriented at ¢ = 0° (flat side
pitching against the free-stream flow), the side-force coefficients are very small and close to
those for B,. However, when B, is rolled to ¢ = 90°, the side-force coefficients increase
considerably. According to reference 18, Cy becomes more than twice C Nata= 50° for
B, at ¢ =90°. As shown in chapter 6, the separation and vortex patterns were very sym-
metric for B, at ¢ = 0°, but they became very asymmetric for B, at ¢ = 90°.

From tests of body B;, the body of elliptic cross section with variable a/b, it was
found that the wake flow-field asymmetry and side forces were influenced mostly by the

nose. As shown in figure 71, when B, was oriented at ¢ = 0° (flattest side of nose pitching
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against the free-stream flow), the side-force coefficients were very small and close to those
for B, (the equivalent body of revolution). However. when B; was rolled to ¢ = 90°,
undesirable side forces developed, and, as shown in chapter 6, the vortex flow was quite
asymmetric (fig. 49).

As for the bodies of revolution, the maximum values of side-force coefficient decreased
as the free-stream Mach number increased. At M., = 1.5, there were essentially no side

forces measured on any of the elliptic bodies even for the worst roll orientation (ref. 18).

7.2 Body-Wing and Body-Wing-Tail Configurations

7.2.1 Effects of adding a wing and a wing plus tail to a body— In figure 72, the effects
on side-force coefficient and side-force position of adding a wing and a wing plus tail to a
body are shown. The body N,C,, which has a fineness-ratio-5 nose, produced the largest
side forces for the bodies of revolution tested. As shown in figure 72, these side forces and
their positions remain about the same with the thin wing W, of aspect ratio 4 attached or
even with the tail T added. (Dimensions for the wing and tail are given in fig. 29 and for the
body in fig. 37.)

From these comparisons it can be concluded that the most important influence comes
from the body nose. As mentioned in chapter 6, the vortex asymmetry that appeared from
the fineness-ratio-S nose, when tested with only the afterbody ~yiinder C,, still persisted
when the wing and the wing plus tail were attached (sec, e.g., figs. ' and 53).

7.2.2 Effects of wing-aspect ratio and taper ratio— For thin wings of about equal
planform area (fig. 29) but with aspect ratios of 3, 4, and 5, there was essentially no effect
of aspect ratio on the measured side forces of the body-wing models tested (ref.20).
Likewise, a change in taper ratio from 0 to about 0.5 resulted in no appreciable side-force
effect (ref. 20). The results were also unchanged when the tail T (fig. 29) was attached to

the wing-body models (ref. 21).
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CHAPTER 8
CONCLUDING REMARKS

A review and an extension of an engineering-type method have been presented for
computing the normal-force and pitching-moment coefficients for slender bodies of circular
and noncircular cross section alone and with lifting surfaces. In this method, a semiempirical
term representing viscous separation crossflow is added to a term representing potential-
theory crossflow. In the generalized equations written for CN and Cm' ratios are required of
the local normal-force coefficient per unit length for the cross section of interest so that for
the equivalent (same area) circular cross section. These ratios are given both from slender-
body and Newtonian theories. Formulas and numerical values of these ratios are included
here for winged-elliptic and winged-square cross sections, the square cross sections having
rounded corners if desired.

In computing normal-force and pitching-moment coefficients for the bodics alone.
slender-body theory was used for the term representing potential crossfiow. In computa-
tons for the bodies with thin wings and a tail, the linearized potential method of Nielsen,
Kaattari, and Pitts was used, modified for high angles of attack.

For many bodies of revolution, computed aerodynamic characteristics were found to
agree well with measured results for investigated frec-strcam Mach numbers from 0.6 to 2.9.
The angles of attack ranged from about 0° to 180° for M_, = 2.9 and from about 0° to 60°
for M, = 0.6 to 2.0. Agreement of predicted with measured results was best at supersonic
Mach numbers.

For several bodies of elliptic cross section, measured results were also predicted reason-
ably well over the investigated Mach number range from 0.6 to 2.0 and at a = 0° to 60°. As
for the bodies of revolution, the predictions were best for supersonic Mach numbers. The
predictions were better for a body in which the cross-sectional shape (a/b) remained con-
stant over the iength than for a body in which it varied. Although the prediction technique
probably can be improved with further research, it is felt that the predictions are suffi-
ciently accurate for most preliminary design studies.

For body-wing and body-wing-tail configurations with wings of aspect ratio 3 and 4,
measured normal-force coefficients and normal-force centers were predicted reasonably well

at the upper test Mach number of 2.0. However, with a decrease in Mach number to
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My = 0.6, the agreement for Cy; rapidly deteriorated. although the normal-force centers
remained in good agreement. At the subsonic Mach numbers (M, = 0.6 and 0.9) and angles
of attack above 10° or 20°, the measured results were even overpredicted somewhat by just
the potential-flow term of the combination method.

From vapor-screen and oil-flow studies, it was observed that the tiow was completely
separated over the wings at the subsonic Mach numbers for a > about 20°. There was some
evidence of vortex bursting  breakdown for some of the models (including bodics alone)
at subsonic Mach numbers. At M_, = 2, however, discrete vortices from the bodies and
wings were observed at the base of the models.

For many body, body-wing, and body-wirs-tail configurations, vapor-screen and oil-
flow photographs were obtained for M, = 0.6, 0.9, and 2.0 and a = 10°, 20°, 30°, 40°, and
50°. It has been observed that, when the separation and vortex patterns were asymmetric,
undesirable side forces could be measured on the mouels even at zero sidesiip angle. These
side forces generally originated at o > 20°,

For bodies alone, the side forces can be significantly affected by chunges in Mach
number, nose-fineness ratio, nose bluntness, and elliptic cross section. The side-force coeffi-
cients decrease with increase in Mach number through the subsonic-transonic range and
disappear with increasing Mach number into the supersonic range.

From tests (at 0.6 < M, < 2.0) of tangent-ogive noses connected to a circular cylinder
of fineness ratio 7, it has been found that the side-force coefficients increase from about
zero for a fineness-ratio-3 nose to a maximum of about 40 percent of the normal-force
coefficient for a fineness-ratio-5 nose. Other researchers have reported even more increases
in Cy {of the order of Cy; or greater) as the Mach number is decreased from 0.6 to 0.25.

Nose-tip rounding significantly decreased the side-force coefficients for a circular body
with a sharp-nosed ogive of fineness ratio 3.5. However, the beneficial decrease was no
greater than that obtained by mercly using a sharp-nosed ogive nose of the same fineness
ratio (fineness ratio 3) as that for the resulting blunted nose.

When strakes were attached to the sides of the afterbody cylinder of an ogive-cylinder
model with an undesirable fineness-ratio-5 nose, the side forces were not significantly

changed. Thus,. the influence of the nose was dramatized.
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Changes in cross section from circular to elliptic for an ogive-cylinder body (of
fineness-ratio-3 nose and fineness-ratio-7 afterbody) produced some interesting effects on
side-force coefficient. At all test Mach numbers (0.6 to 2.0) and angles of attack (0° to 60°),
the side-force coefficients were generally small or negligible for the circular body and the
generated elliptic bodies at ¢ = 0° (flat side pitching against the stream crossflow). With the
elliptic bedies at ¢ = 90°, however, some values of side-force coefficient became as large as
twice the values of normal-force coefficient at the same high angles of attack. From the
standpoint of reducing undesirable side forces at high angles of attack, it was always found
best to have the flattest side of the clliptic body nose pitching against the stream crossflow,
even when a/b was not constant over the body length.

Undesirable side forces measured for body-wing and body-wing-tail models were gen-
erally about the same as those measured for the bodies alone. As for the bodies alone, the side
forces developed at subsonic Mach numbers for a > about 20°. Also, as for the bodies alone,
the side forces and yawing moments incrcased with increase in nose fineness ratic. Fineness
ratios greater than 3 produced the largest side forces. No effects of wing-aspect ratio or
taper ratio were observed. From these comparisons, it can be concluded that the most

important influence comes from the body nose.
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APPENDIX A
DERIVATION OF (C”/C"O)N FOR WINGED-CIRCULAR
ewt
AND WINGED-ELLIPTIC CROSS SECTIONS

Winged-Circular Cross Section with Wing Planform Perpendicular

to Crossflow Velocity

For blunt configurations of the type y
shown in sketch (m), it is assumed that each
elemental particle of fluid strikes the 3

configuration at velocity V,

and thercupon
n Vn

loses its normal component of momentum. c——g X
This Jeads to the well-known Newtonian I

expression for the pressure coefficient:

— Y an?
p-2sm 6 (A1)

Sketch (m)

where 8 is the local angle a tangent to a forward-facing surface makes with the free-stream
direction (sketch (m)). In Newtonian flow, the pressure coefficients over the rearward face
are assumed to be zero. The total section crosstflow drag coefficient ‘based on body diam-

eterd = 2r)is then given by

5 o)
= +=1C d 2
d f' Pbody dy d [ Pwing d (A2)

[/

For a circular section as shown in sketch (m),

xt 4yt =p2 (A3)
P = (1'!: = - 5 == - .’ -
tan 6 df ¥ .‘T’— ‘ (A4)
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and

. v y?
sin? § = — =1-Z (AS)

Equ-tions (A1) and (AS) are substituted into equation (A2) to give
_1 [ y? 1 [
Cd—7f2(-’—2)dy+7-f2dy (A6)
0 r

since

= in? =
prmg 2sin? § =2 (A7)

From integration of equation (A6), we obtain

=4 (- =2(s-1
Ca=3+2(2-1) 2(2-3) (A8)
where, for the equivalent circular section,
Wdn = —;— (A9)

Thus, the ratio of the normal-force coefficient per unit length for the winged-circular

section to that for the equivalent circular section is given by

SIS

Newt N/Newt

Winged-Elliptic Cross Section with Semimajor Axis and Wing Planform

rerpendicular to Crossflow Velocity

For a winged-elliptic cross section where the semimajor axis (2) and the wing planform
are perpendicular to the crossflow velocity V, (see sketch (n)), the same procedure is
foilowed in the derivation of (C,/C, ) as introduced for the winged-circular cross

i ) O Newt .
section. Both the vasic equations, (A1) and . A2}, are used again.
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y For an ¢iliptic body as shown in sketch (n),

X2, 1 (A1)
b g2

8

‘ __dy_ 2

a® (x\ _ «a <|/a2
vn tana—ax—“——g‘(—}‘)—"-z;— ?—] (A]z)

2 2 2
in2 § — _fan b _ at -y
sin I+tan? s a - yo[l- (b%/a%)]

(A13)

osketch (n)

With equation (A13) combined with equations (A1), (A2), and (A7), we obtain the

section crossflow drag coefficient:

a 5
4 a? - y? 4
C;=— —_— - dy + — dy (A]4)
‘ df &y - 6] ¢ df '
0 a
where d is the diameter o. the e yuivalent-circular body and is given by

d=2\/ab (Al5)

Also, as for the winged-circular cross section, the crossflow drag coefficient for the equiva-

lent circular cross section is given by C;, = 4/3.
dy

Thus, by integrating equation (A14), substituting 2\/ab for d, and dividing the result
by 4/3, we obtain

Cy _3 VZ -b2/q? a b?
(’é?f) R RN Tl AN A
Newt

0

o+ 3 (A16)
© a
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since

Winged-Elliptic Cross Section witn Semiminor Axis and Wing Planform

Perpendicular to Crossflow Velocity

For a winged-elliptic cross section
where the semiminor axis b and the wing
planform are perpendicular to the cross-

n
flow velocity ¥, (sketch (0)), the same ____ g

X
procedure is followed as for the previous
configurations.
For an elliptic body as shown in
sketch (o), Skeich (o)
xt 2
iy (A17)
b1 gl = - b_2 i = - ._b‘ b2 -—
tns=F=-% (F)=-1 V5 - (A18)
and
2 2 2
in? § = tan® § _ b* -y
S T+ tan? 8 b2 - 21 - (@ /b?)] (A19)
With equation (A19) combined with equations (A1), (A2), and (A7). we obtain
b 2 2 )
4 b -y 4
Cy=— - dv + — dy 0
d df BT T[T - @60 ) df ) (A20)

[¢} 0

where d = 2,/ab is tt * diameter of the equivalent circular cross section. As before, the cross-
flow drag coefficient for the equivalent circular cross section is given by Cdn = 4/3.

Thus, by integrating equation (A20), substituting 2,/ab for d, and dividing the result
by 4/3, we obtain
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¢ _ 3./ a? [b? -1(1_1)__1___+_S.-1
<_071n—> 2 V; @t - i\ @pH-1" b
Newt
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APPENDIX B
DERIVATION OF (Cn/Cn )N FOR WINGED-SQUARE CROSS SECTIONS
O Newt
WITH ROUNDED CORNERS

For winged-square cross sections with

rounded corners (sketch (p)), the pressure coef- Y
r=Kw
ficient over the front face is given by Iy 1

Cp=2sin? 8 (B]) et w

T
where & is the local angle that a tangent to a ? __L S
forward-facing surface makes with the free- > J_
stream direction. In Newtonian flow, the pres-

sure coefficients over the rearward face are Sketch (p)

assumed to be zero. The total section drag coef-

ficient (based on width w) is then given by

2 A
o
= dy + =
wf Cpbody Y w f CPwing dy
0 w/2
2 (w/2)-r 2 7 (% 5
== C + = C dv+=] C ’ B
w Pflat dy w Pcorner YT W f Pwiny b (B2)
[o] 0 w/2
For a rounded corner, as shown in sketch (p),
x? + y? =2 (B3)
Y x_ ]/L’ -
tan & i " X 1 (B4)
and
. tan? & y?
2 | ——— - —
sin? § [T tan? 1 7 (BS)
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The pressure coefficient for the rounded corner, obtained by substituting equation (B5) into

(B1), is
=2 (1 - lz) (B6)

Pcorner r?

The pressure coefficients for the front flat portion of the body and for the wing are

given by

Cp =2sin? § =2 (B7)

since § = 90°

Thus, with equations (B6) and (B7) substituted into equation (B2), we write

4 (W/z)'r 4 r 2 N
[o] 0

w/2

From integration of equation (B8), we obtain
_ 4 _r
Ca=y (s 3)

Now, to obtain (Cn/Cno)N , it is necessary to find the diameter d of the equivalent
ew!

=4 (i . ﬁ) (B9)

w 3

circular cross section which has the same area as the cross section studied. The area of the

equivalent circular cross section is, of course,

= T 10
A 3 d (B10)

and the area of the cross section studied is
A=wil-k*@-m) (B11)

By equating equations (B10) and (B11), we obtain the equivalent diameter

d= 2w]/.‘_:_(;4__ﬂ‘"£‘.’. (B12)

With Cd from equation (B9) based on d instead of w,

Ca=4(%- .3’5)% (B13)
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B . .~ LI,

%mwwywwn N

where, for the equivalent circular section,

Thus, from equations (B12), (B13), and (B14), we obtain

S\ _ (% =é(_s_-_’£)]/_ﬂ___.
C, o 2 \w 3 1-@-mk?’
Newt

0

0<k<05
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APPENDIX C
FORMULAS TO COMPUTE GEOMETRIC PARAMETERS FOR TANGENT OGIVES

To compute the aerodynamic charact :ristics of bodies of revolution having tangent
ogive nose shapes, various geometric parameters must be obtained. To compute CN and Cm,

the planform area A4, is required; to compute C,,, it is also necessary to obtain volume V

and distance x, frorlr)x the nose vertex to the centroid of planform area. To compute skin-
friction drag, the wetted surface area A4 is needed.

For an ogival nose of length %y and diameter d (see sketch (q)) the following useful
formulas have been derived (1ef. 9):

| In 2
A ' ¢ Ras/d
N g2 [INY 4 g2 gt (N
7 4 R () R? sin (R)

(CchH

[}
[ )
>
g
]
¥
| —
g

i<

<R REY) e

Sketch (q)

(C3)

oy (23){R® - [R? - n/d?* I/} - (yld)? R - (1/2)]
d Apfd?

A -Qnr/d L

s _ 1 . N N
2= ~ 2 4 = 4
7 27R [( 2) sin ( R ) " ] (C4

where R is the ratio of the ogival arc radius r; to base diameter d and

WY g
- (N) L L (5)
(d ) *

Te _
d

and
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Figure 3.— Variation of crossflow drag coefficient with crossflow Reynolds number for
circular cylinders at supercritical Reynolds numbers and at crossflow Mach numbers from
0.25 to 0.50 (from ref. 54).
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Figure 4.— Ratio of crossflow drag coefficient for a finite-lergth cylinder (or flat plate) to
that for an infinite-length cylinder (or flat plate) (from ret. 50).
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Figure 7.- Ratio of local normal-force coefficient for an elliptic cross section
to that for the equivalent circular cross section.
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(b) Planform views of configurations studied.
Figure 24.— Concluded
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(c) Three-quarter view.

Figure 25.— Photographs of aluminum body B;.
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TYPICAL LEADING EDGE
SECTION A-A ENLARGED

0.5 d—{
0.005 d RADUS >~
TYPICAL TRAWING EDGE
SECTION B-8 ENLARGED

2d
1
l
< B

ALL UNEAR DIMENSIONS
IN TERMS OF BOOY DIAM,
N,

WING| R | My |€,degls-r|c| ¢t {c/er
w, (4] 4 | a5 {35135 0 0
Wy |4 [3.784{99.03{3.5]2.9/0.800{C.27¢
Wy |4 [3.653]7).5713.5[2.5{1.333/ 0.533

b 1d=-1d—-]
R = ASPECT RATIO FOR WING EXTENDED
INTO BODY s A-A B8 | VveRTCALTML, Ty
fRg e ASPECT RATIO FOR TWO EXPOSED 2d
WING PANELS JOINED TOGETHER ¢ f=c1~
+ 40~ l
] T
8_____ i
4

(a) Body B, with aspect-ratio 4 wings of various taper ratios
and tail arrangement.

y;

(8-ne HORIZONTAL TAK, Th

35d

—
d
4
Wy
ALL LINEAR DIMENSIONS W
IN TERMS OF BOOY DIAM, d "
o e
WINGIR| My |€, degi s-r | ¢, Cy | cy/ee s-1)
W, | 5 |4.761]64.36 |3.972|2622{0.715]0.273
We | ¢ | 3.784]89.033.500{2.900{0.800] 0.276 ‘
Wq | 3 |2.810[57.33 |2.984] 3.295|0.924(0.280 |
M+ ASPECT RATIO FOR WING EXTENDED INTO BODY - ‘
Mg » ASPECT RATIO FOR TWO EXPOSED WING PANELS [
JOINED TOGE THER s
L — Cr “"“"“
F 4d

(b) Body B, with wings of aspect ratio 3,4, and 5 (W, W,, and W,).

Figure 29.— Components for body-wing and body-wing-tail models tested in
references 20 and 21.
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Wq |4.761]64.36 [3.972(2622[0.715]0.273 |
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(c) Body B, with wings W,, W,, and Ws.
Figure 29.— Concluded.
A |
B, Wy 90"’57\ \l 3
ByWy \\_ 8:*:“'\ K %
3
yAavi )
—] o —— i
'2“5 ..WQT\‘ \ ;
Figure 30. Planform views of configurations for which the aerodynamic characteristics
were measured in references 20 and 21 and computed in this study.
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Figure 37.— Additional tangent ogive noses and strake for modification of body B, .
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(b) Picture of light-box installation,

Figure 39.— Continued.
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(¢) Picture of model and camera installation,

Figure 39.- Concluded.
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Figure 40.- Identification of typical items shown in vapor-screen photographs taken for a
body at M, = 2.0.

138

-




“(asou g-onei-ssauduy yum £poq) ')A = g 10) sydesdojoyd usarss-todep [ undty

— . -

'9°0 =T (®)

s : .
~ 4\ ( , r B | 4
£ oy "
———— ; .,,m wﬁ& . 3
i ! ¥ ! € VIS
tud

Z V1S

139

I V1S

-0G Ob 0F «02 OImD

-
Hin =g -2

1 NOLLVLS



— e e

"panunuo) — | undi4

60 ="W (Q)

€t 'vis

2Vis

140

T e

HE 02 DI™D



‘papnpuo) - | Mndig

e 0T = U ()

-
g5
ws 3

- ¢ VIS
2 w1s
1 YiS

—_— 'ain-='e - —2

-+ — — | NOWLVLS

bl 0

141

OF POOR QUALITY

ORIGINAL PAGE I8



— ~—~
It
—

| P

*(3s0u ¢ £-01PI-SSAUIUL) Yum Apoq) ')y 10) syderdojond udasis-todey -

‘90 = W (e)

_ o/

»y
\‘ 5

‘TF Ay

Oi=D

£ visS

2 V1S

142

1 'vis



i

-
Ly

-0Ob

‘panunjuo) — ¢ aIndiyg

60 =" (Q

€ 'v1S

,.qu
LS i
m‘%ﬂ o
_ﬂ 2 vis
- #mm.r.,f B « “
’ | VIS

0t 002 Ol=D

g
'35 2N -z

++ = -- | NOILVLS

Ceuw




R

‘pPapnpuo) — 7 Indig

0T="w )

A ——

€ V1S
..r@.n,y? .

¢ vis
. | V18

«06 Ot

@
——¢

— — | NOILViS

144



" apRa T R Ry s oo

-,

|
|

20§

(9sou G-oljei-ssauauly Yyum Apoq) 't 10 syderdojoyd uassos-todepg — g4 andi

o)

90 =i (v)

0¢

-~ | NOILVLS

L A

02

-,

€ V1S

\ W.
sy
Mw 2 V1S

145

1 V1S

Ol =D



Ot

‘Panunuo) — g4 an3ig

60 =" ()

ey
M

— — 1 NOILVLS

€ ‘VviS

2 V1S

1 vis

146



Ob

‘papnpuo) — ¢ AUndig

.O.N = OONA\ AOV

0

2

o0OIsD

€ VIS

2 vis

| V1S

147

ORIGINAL PAGE IS
OF POOR QUALITY



«0S

"(€ Ones ssauduly JO asou junjq Yim Apoq) 'H*px 1oj sydesfojoyd uadios- ., —pp aundiy

90 =W (®)

1 \\ ﬁm‘ﬂw
3 4
_" ! 5 € V1S
m .;.,.Emy,wm _
K.
N \
ﬂ_. 2 vi1s
M \.M. -
4 _ / £ t "vis
|
OOV Oon Oo_ s D
Tt
I
o PN * | ——2

s

J — — | NOWLVLS
\

148



Ot

S

‘panunuo’y —pp undi g

60 ="y Q)

e
» L3

0%

-

RS

N ——2
~<—— ) NOLLVLS

02

£ VIS

2 'vis

| 'Vis

149



"papnipuo) — i undi4

‘07 =W )

Iy by

,,,,

frc

‘“ — — | NOI1ViS

' .

«0¢

-

TP

€ vis

¢ V1S

| V1S

150



(AYRNS APoqIaye pur asou g-onri-ssauauty im Apoq) §1) €47 105 syderiojoyd uddsns-jodep S andiy

06

Ob

.C.O - 8%». Aﬂv

N S/

°0¢

P

T

——€
—--2

Ll— -~ 1 NoILvLS

02

s

,....
o/

€ vis

h4
,. A 7S
5 -

: # 1 vis

Ol D



[P a——

el

ek

‘Panunuo) - gy andiyg

-,

€ vis

. " % . 2 'vis

1 V1S

«Oim D

.08 «0¢

— — 1 NOILVLS

152



"paprru0) g aundty

0T =" )

N -2

—-— 1| NOILV1S

Ol D

€ vis

2 V1S

I 'vis

153



(ofo)

06

"(SUOT1I3s SSOID g/p Jueisuod Yum Apoq) 0 = ¢ 1e 1g 10j sydesdojoyd usasxs-1odep - "9p undr g

‘90 =W (v)

e
®

[ .
e J,.
.ov .on .o~
w.,||n
0:=¢ % ——2
» «— — | NOILVAS

toy

2]

'
€ V1S
T
| Z vis
m .
— - | VIS
§
Ol = D

154



e

2 onunuo) — 9 andig

.@.o = 8&% Aﬁ—v

€ VIS

¢ Vvis

15§

1 'Vv1S

.2

JRS—
——2

0 =928
- «— — | NOILVIS



«0S

"PAPNPUO) "9y aandi

0T =W )

g, ) e
W W‘h»:
" G

£ V1S

et L

2 'vis

156

K P
. B e e 4..
&y ‘ V
e 1'viS
W
-y

.02 Ol m D

Ot 0t

0 = * NQ ——
— — | NOILLIVLS



“(SUOL}IIS SSOID ¢/D JUEBISUOD Jim APOQq) 06 = ¢ I1E 1g 10) sydesdojoyd uaaids-todep -/ i

90 = ()

iy, L € WIS
W :
f wsmi
! e
sC\ v N v
A 2 VIS
i )
rkm. \/ w N v
. - | 'V1S
L J
*
<06 Ot o0E 002 Ol =D
——¢
006 = ﬂ Nm , — 2

”ll — 1 NOI1V1S

Vi

157



008

‘panuniuo)) — /4 andig

60 =" (q)

)4 <0t

&

——€

|
06 = ¢ %8 mllm

Q' — | NOLLV1S

Ol 8 D

€ 'Vvis

2 V1S

1 'visS

158



‘Papnpuo) — 4 aIndt4

- 0C =" ()

- € 'ViS
2 V1S
——— ' ..r;‘.”,k. o : ' mu.w ewing #A
O | B
& !
S N . .
- i ) 1'vLS
N . £ o b gen
Yo .

°0G Ot

.

h g
I 006 = ¢ ¢g ——2

Li— — | NOILVLS

¥

159



oo

°0S

"(SuUOI123s $S0ID q/p d|qelIEA YlIM ApPOq) o0 = ¢ 18 tg 10 sydesdojoyd udaids-jodep — gy andiyg

?.-M""“

Ot

‘90 =

mfv m_ |

”»

¥

°0¢

0= ¢ %8

“W (v)

002

mw
f——¢

——z2

{
,
\
H—— INOILVLS

T e

\

€ 'vis

2 vis

1 'V1S

o0l = D

160



-panunuo) gy 2Ny

60 =" (q)

H
S,
,,dwu
wm
’ e
- g uwu . ,m
1]
°ov -0F
£
n——¢€
oo = ﬂ nm . —2
|
» wli I NOIIVIS
\

!
/

002

€ 'vis

¢ Vis

| 'V1S

ORIGINAL PAGE I3

OF POOR QUALITY

161



& e ottt -

°0S

‘papnpuo) — gy andig

0T ="w )

<Ot <0
&

—t
oOnﬂnm ——2

— — | NOLLVLS

002

Ol » D

€ V1S

2 'vis

I 'vis

162



"(SUOIDAS SSO1D ¢/ dqeiea Yum Apoq) 06 = ¢ 18 g 10j sydesdojoyd usards-1odep 6 aundig

90 =" (®)

P , . ’ c ‘ 1
o . 4 € 'vis

(,ri o N
-
A ot

a%ﬂm

2 'vis

163

. 1 V1S

«0S Ot «0¢ 02 Ol s D

€
06=¢ ftg . ——2

1
'

1_

1

— | NOILVIS

i



‘panunuo)) — 6 dIndi

60 =""w (Q

€ V1S

%, 2 'vis
5 LT
P

Mo, " 1 'visS
LY ~ -

Ot o0¢ 02 Ol =D
——¢€

46

006 = ¢ €8 Jllm
—-~— | NOLLV1S

164



Ot

ey, .

PapNPUO) ot AN

0T

¥

—9

bt A R))

{
I

a — — | NOILVLS

€ V1S

2 'Vis

| 'Vis

165



(Fum £-0NEI-1AdSE puR 80U g-oneI-ssau L Yim Apoq) ity = Sm 'y 1o) sydesdojoyd uanass-todep Qg andig

Ot

90 =W (v)

S

0t 00¢

————¢
Sm g ——2e

— — —— | NOLLV.S

o
£ V1S
———
2 V1S
¥
| "VLS
Ol s D

166



0

‘nanunuo) QS Mndt g

‘60 ="Iv Q)

Sm g .
e ——— 1 NOLVLS
Y

Olss D

€ V1S

2 'Vis

| V1S

107



O¢v

‘papnpud) - ‘0§ andig

L ]
,\; n gt
Ne 3 «02
————t
Sm g - r4

— — — — | NOILV4S

€ V1S

2 'vis

I'V1S

168



“(AUIM P-O1RI-1IIASE PUE d30OU F-O1RE-ssaudUL) YItm Apoq) Syt ' = L'y 10) syderdojoyd uddans-rodey Cpy andg

T 90 =T ()
|
_ \
! s”_ :
s - s
2 'Vis
o
o k4 2
i - =
» R s
-
e ,M { w‘
vm' e i -
» I %, ; y | VIS
H 4 ]
[ ; . i o .
_ , . _
- _ : .
Ot <0t «02 Ol =D
pooooE

Imlg . e 2

A -



‘Panunuo) - - g undiy

QR 'Rﬂ;

60

=W (Q)

— — — — INOILV1S

'3
\
] '.
/ ¥
e
M@.
- m,.g,.
' .
oo
il

N D

£ 'vis

¢ 'vis

I 'v1S

170



“papnpuo) [ ¢ gt

0T = (9)

€ VviS

2 'vis

1 °'ViS

I

— -2
Zm _m / 3
— ——— | NOLLV1S

171



‘(113 pue “Suim $-01RI-103dSE “3ISOU €-O1JRI-SSAUdULY Yam APOq) 2 ' DN = L *M 'g 10) sydesojoyd uaaios-todep —-7¢ ansig

Ot

0t

1% iN=1%nlg

90 =" (v)

o .\ -

-~ &

./

) -
o

S

/J

-

————1 NOLLY"'S

<

o

~

Ol D

————

€ V1S

2 'vis

172



Ot

.y,
it

‘panunuo)) - 'Cs a3y

60 = W (Q)

002

0

[ L £
=

————2

I NOILVLS

€ VIS

2 'vis

173

I V1S



papnpPuo) — 7§ undig

0T =" )

y P
¢ V1S
. 2 vis
| 'YLS

P10} 4 0%

174



" ek < -

(3ulm $-01BI-100dSE PUE JSOU G-O11BI-SSaUAUL YIM Apoq) 4y ') EN 10) sydesdojoud uaains-1odep -y ¢ aundiyg

o0t

.O.o — QDNQ Aﬁv

0

em 1o EN -
r1—— — — | NOILVLS

|

v

€ V1S

1 'V1S

Ol = D

175



"panunuo) - "gg undty

<0 °02
————¢

e ———2
g

Zm 10 EN Y
I NOILVLS

v
1

L
Vo
3!

i

oOl = D

¢ Vis

2 ViS

| viS

176



‘papnpouo) --"¢¢ angi,

.Q.N “8: A;Jv

€ viS

2 V1S

I V1S

Ot °0¢

c4—— —— | NOILV1S

i

177



“(Ite} pue "Juim f-onjes-1aadse *asou g-onei-ssauaury yym £poq) £ 34 ')A 10) sydesdoroyd udams-jodep S andig

.CO . 8N< Aﬂv

_ | s ¢ WIS

e 4 oGt

;_,Illt_zo_.?pm
{

]
v



LT R e o R B
Lre

‘panunuo) — 4§ dIndi g

60 ="W (Q)

€ V1S

¢ 'Vis

| 'V1S

179



et

Ov

papnpuo)  “ps undig

0T =" )

RO ..na.fa..y _

°o0€ 002
P‘d_q ._|||m

W

( ————2

12N,
j— ——— | NOUVLS

!

J
i
v

€ VIS

2 vis

| V1S

180



TOP

Q=~|0°

e g

e

a =~ 20°

a =~ 30°

~ -
= ~t e
B
— o e . e tare & B o
__— C——— e
- o to ¢

Qa »40° e

3 ' '\ W
i My = 0.0,
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Figure 61.— Oil-flow photographs for B, at ¢ = 90° (body with constant a/b cross sectiors).
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Figure 62.— Oil-flow photographs for B, at ¢ = 0° (body with variable a/b cross sections).
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Figure 72.— Effects on side-force coefficient and side-force position of adding a wing and a
wing plus tail to a body.
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Figure 72.— Concluded.
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